DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5922
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSantos, Marlúcia Oliveira dos-
dc.date.available2024-09-11-
dc.date.available2024-09-13T15:24:14Z-
dc.date.issued2024-05-02-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5922-
dc.description.abstractAcute myeloid leukemia (AML) is a disease heterogeneous hematological, which develops in the bone marrow after genetic and epigenetic changes in hematopoietic precursors, resulting in the clonal proliferation of blast cells of the myeloid lineage. Variations in the FMS-Like Tyrosine kinase 3 (FLT3) gene, as internal tandem duplication (FLT3-ITD) and variant in the D835 codon are reported frequently 30% and 10% of the cases, respectively. These mutations are associated with poor survival and risk of relapse. However, data on other variants in the FLT3 exome are not reported. Objective: This study aimed to evaluate variants in FLT3 in patients with AML treated at the Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas. Methodology: Were evaluated 36 patients diagnosed with AML of both genders and aged between 18-92. Bone marrow samples were collected and identification of FLT3 exome variants was performed by Sanger sequencing. Results: Different FLT3 gene variants were identified, total of 26 variants in 18 patients. Missense variants were found in functional domains, as 6 (23.1%) extracellular (EC), 3 (11.5%) transmembrane (TM), 1 (3.9%) juxtamembrane (JM), 5 (19.2%) in the tyrosine kinase I domain (TKD1) and 4 (15.4%) tyrosine kinase II domain (TKD2). FLT3-ITD variants were identified 3 (11.5%) in the JM domain and 4 in TKD1 (15.4%). The allele frequency (VAF) of pathogenic variants ranged from 11-62.5%. Missense variants were related with intense thrombocytopenia (p=0.038) and increased blasts in peripheral blood (p=0.014). Higher hemoglobin values were observed in patients with FLT3-ITD (p=0.049). The presence of a variant in the FLT3 gene can be identified in patients with secondary AML and in relapse, as discussed in a report of 4 cases, therefore the majority were identified in new AML (75%). Conclusion: This study highlights the occurrence of different potentially pathogenic variants in the FLT3 gene in patients with AML, the missense variants as most prevalent and related with hematological changes, highlighting the importance of screening variants in the FLT3 exomept_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectLeucemia mieloide agudapt_BR
dc.subjectFLT3pt_BR
dc.subjectDuplicação interna em tandempt_BR
dc.subjectInibidores de FLT3pt_BR
dc.subjectVariante missensept_BR
dc.subjectAcute myeloid leukemiapt_BR
dc.titleAvaliação de variantes do FLT3 em pacientes com leucemia mieloide aguda atendidos na Fundação Hospitalar de Hematologia e Hemoterapia do Amazonaspt_BR
dc.title.alternativeEvaluation of FLT3 variants in patients with acute myeloid leukemia treated at the Fundação Hospitalar de Hematologia e Hemoterapia do Amazonaspt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2024-09-13T15:24:14Z-
dc.contributor.advisor-co1Passos, Leny Nascimento da Motta-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8194622149198642pt_BR
dc.contributor.advisor1Silva, George Allan Villarouco da-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1939667501234091pt_BR
dc.contributor.referee1Silva, George Allan Villarouco da-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1939667501234091pt_BR
dc.contributor.referee2Costa, Allyson Guimarães da-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7531662673281014pt_BR
dc.contributor.referee3Silva, Celso Arrais Rodrigues da-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6962573800002763pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6585900986900272pt_BR
dc.description.resumoA Leucemia Mieloide Aguda (LMA) é uma doença hematológica, heterogênea, que se desenvolve na medula óssea a partir de alterações genéticas e epigenéticas nos precursores hematopoiético, resultando na proliferação clonal de células blásticas da linhagem mieloide. Alterações no gene FMS- Like Tirosina quinase 3 (FLT3), como duplicação interna em tandem (FLT3-ITD) e variante no códon D835 são relatadas com frequência de 30% e 10% dos casos, respectivamente. Essas variantes são relacionadas a baixa sobrevida e risco de recaída. Entretanto, dados sobre outras alterações no gene FLT3 são pouco relatadas. Objetivo: Este estudo teve como objetivo avaliar variantes no FLT3 em pacientes com LMA atendidos na Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas. Metodologia: Foram avaliados 36 pacientes com diagnóstico de LMA de ambos os gêneros com idade entre 18-92 anos. Amostras de medula óssea foram coletadas e a identificação de alterações no gene FLT3 foi realizada pelo sequenciamento de Sanger. Resultados: Diferentes variantes do gene FLT3 foram identificadas, total de 26 variantes em 18 pacientes. Variantes tipo missense foram encontradas nos domínios funcionais, como 6 (23,1%) extracelular (EC), 3 (11,5%) transmembranar (TM), 1 (3,9%) justamembranar (JM), 5 (19,2%) no domínio tirosina quinase I (TKD1) e 4 (15,4%) domínio tirosina quinase II (TKD2). FLT3-ITD foram identificadas 3 (11,5%) no domínio JM e 4 no TKD1 (15,4%). As variantes classificadas como patogênicas foram 19 (73,1%) com frequência alélica das variantes (VAF) de 11-62,5%. Variantes tipo missense foram relacionadas com intensa plaquetopenia (p=0,038) e aumento de blastos no sangue periférico (p=0,014). Maiores concentrações de hemoglobina foram observadas em pacientes com FLT3-ITD (p=0,049). A presença de variante no gene FLT3 pode ser identificada em paciente com LMA secundária e na recaída, como abordado em relato de 4 casos, portanto a maioria foram identificados em LMA novo (75%). Conclusão: Este estudo destaca a ocorrência de diferentes variantes patogênica no gene FLT3 em pacientes com LMA, as variantes missense como mais prevalentes e estão relacionadas com alterações hematológicas, destacando a importância do rastreio de variantes no gene FLT3pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references1. Rodriguez-Abreu, D., et al. “Epidemiology of Hematological Malignancies”. Annals of Oncology, vol. 18, fevereiro de 2007, p. i3–8. DOI.org (Crossref), https://doi.org/10.1093/annonc/mdl443. 2. Bornshten, Rut, et al. “Projection of Expression Profiles to Transcription Factor Activity Space Provides Added Information”. Genes, vol. 13, no 10, outubro de 2022, p. 1819. PubMed, https://doi.org/10.3390/genes13101819. 3. Brasil. Ministério da Saúde. Instituto Nacional de Câncer José Alencar Gomes da Silva. Estimativa 2020 - Incidência de Câncer no Brasil [Internet]. Rio de Janeiro; 2019. 122 p. Available from: www.inca.gov.br 4. Khwaja, Asim, et al. “Acute Myeloid Leukaemia”. Nature Reviews. Disease Primers, vol. 2, março de 2016, p. 16010. PubMed, https://doi.org/10.1038/nrdp.2016.10. 5. Marco Antonio Zago Roberto Passetto Falcao RP. Tratado de Hematologia. 1o Edição. Sao Paulo; 2013. 900 p. 6. Cagnetta A, Adamia S, Acharya C, Patrone F, Miglino M, Nencioni A, et al. Role of genotype-based approach in the clinical management of adult acute myeloid leukemia with normal cytogenetics. Leuk Res [Internet]. 2014;38(6):649–59. Available from: http://dx.doi.org/10.1016/j.leukres.2014.03.006 7. Licíni MA, da Silva MCS. Importância da detecção das mutações no gene FLT3 e no gene NPM1 na leucemia mieloide aguda - Classificação da Organização Mundial de Saúde 2008. Rev Bras Hematol Hemoter. 2010;32(6):476–81 8. Thol, Felicitas, e Arnold Ganser. “Treatment of Relapsed Acute Myeloid Leukemia”. Current Treatment Options in Oncology, vol. 21, no 8, junho de 2020, p. 66. PubMed, https://doi.org/10.1007/s11864-020-00765-5. 9. Daver N, Wei AH, Pollyea DA, Fathi AT, Vyas P, DiNardo CD. New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J [Internet]. 2020;10(10):1–12. Available from: http://dx.doi.org/10.1038/s41408-020- 00376-1 10. Döhner, Hartmut, et al. “Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN”. Blood, vol. 140, no 12, setembro de 2022, p. 1345–77. PubMed, https://doi.org/10.1182/blood.2022016867. 88 11. Kumar, C. Chandra. “Genetic Abnormalities and Challenges in the Treatment of Acute Myeloid Leukemia”. Genes & Cancer, vol. 2, no 2, fevereiro de 2011, p. 95–107. PubMed, https://doi.org/10.1177/1947601911408076. 12. Löwenberg, B., et al. “Acute Myeloid Leukemia”. The New England Journal of Medicine, vol. 341, no 14, setembro de 1999, p. 1051–62. PubMed, https://doi.org/10.1056/NEJM199909303411407. 13. Manual MSD Available from: https://www.msdmanuals.com/pt- br/profissional/hematologia-e-oncologia/leucemia/leucemia-mieloide-aguda-lma. Acessado em 30 de maço de 2023. 14. Gasparini KT, Guariento KN, Nai GA, Bressa R de C, Bressa JAN, Abreu MAMM de. Infiltração por leucemia mieloide aguda na pele: relato de caso. Bibliotera Virtual em Saúde [Internet]. 2018;23(18):[85-89]. Available from: http://docs.bvsalud.org/biblioref/2019/01/969279/rdt_v23n3_85-89.pdf 15. Incidência de Câncer no Brasil. 2023 https://www.inca.gov.br/publicacoes/livros/estimativa-2023-incidencia-de-cancer-no- brasil. Acessado em 01 de jneiro de 2023. 16. Miranda-Filho, Adalberto, et al. “Epidemiological Patterns of Leukaemia in 184 Countries: A Population-Based Study”. The Lancet Haematology, vol. 5, no 1, janeiro de 2018, p. e14–24. DOI.org (Crossref), https://doi.org/10.1016/S2352- 3026(17)30232-6. 17. Farias MG, Castro SM de. Diagnóstico laboratorial das leucemias linfóides agudas. J Bras Patol e Med Lab. 2004;40(2):91–8. 18. Newell, Laura F., e Rachel J. Cook. “Advances in Acute Myeloid Leukemia”. BMJ (Clinical Research Ed.), vol. 375, outubro de 2021, p. n2026. PubMed, https://doi.org/10.1136/bmj.n2026. 19. TENDÊNCIAS DA MORTALIDADE POR LEUCEMIA NO BRASIL [Internet]. Observatório de Oncologia. 2020. Available from: https://observatoriodeoncologia.com.br/mortalidade_leucemias/ 20. Silva-Junior, Alexander Leonardo, et al. “Acute Lymphoid and Myeloid Leukemia in a Brazilian Amazon Population: Epidemiology and Predictors of Comorbidity and Deaths”. PLOS ONE, vol. 14, no 8, de ago. de de 2019, p. e0221518. PLoS Journals, https://doi.org/10.1371/journal.pone.0221518. 21. POZZO AR. Mecanismo de resistencia as antraciclinas e a citarabina em Leucemia Mielóide Aguda. INCA. 2017;(Rio de Janeiro):1–152. 89 22. CARLOS EDUARDO LIMA DE SOUZA CRUZ. Marcadores biomoleculares no manejo clínico de pacientes com leucemia mieloide aguda. Med Curso. 2021;1–42 23. Winer ES. Secondary Acute Myeloid Leukemia: A Primary Challenge of Diagnosis and Treatment. Hematol Oncol Clin North Am [Internet]. 2020;34(2):449–63. Available from: https://doi.org/10.1016/j.hoc.2019.11.003 24. Khoury, Joseph D., et al. “The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms”. Leukemia, vol. 36, no 7, julho de 2022, p. 1703–19. DOI.org (Crossref), https://doi.org/10.1038/s41375-022-01613-1. 25. Lane, Steven W., et al. “The Leukemic Stem Cell Niche: Current Concepts and Therapeutic Opportunities”. Blood, vol. 114, no 6, agosto de 2009, p. 1150–57. PubMed, https://doi.org/10.1182/blood-2009-01-202606. 26. Jaiswal, Siddhartha, et al. “Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes”. The New England Journal of Medicine, vol. 371, no 26, dezembro de 2014, p. 2488–98. PubMed, https://doi.org/10.1056/NEJMoa1408617. 27. Yamashita, Masayuki, et al. “Dysregulated Haematopoietic Stem Cell Behaviour in Myeloid Leukaemogenesis”. Nature Reviews. Cancer, vol. 20, no 7, julho de 2020, p. 365–82. PubMed, https://doi.org/10.1038/s41568-020-0260-3. 28. Chopra, Martin, e Stefan K. Bohlander. “The Cell of Origin and the Leukemia Stem Cell in Acute Myeloid Leukemia”. Genes, Chromosomes & Cancer, vol. 58, no 12, dezembro de 2019, p. 850–58. PubMed, https://doi.org/10.1002/gcc.22805. 29. Grimwade, David, et al. “Molecular Landscape of Acute Myeloid Leukemia in Younger Adults and Its Clinical Relevance”. Blood, vol. 127, no 1, janeiro de 2016, p. 29–41. PubMed, https://doi.org/10.1182/blood-2015-07-604496. 30. Uckelmann, Hannah J., et al. “Therapeutic Targeting of Preleukemia Cells in a Mouse Model of NPM1 Mutant Acute Myeloid Leukemia”. Science (New York, N.Y.), vol. 367, no 6477, janeiro de 2020, p. 586–90. PubMed, https://doi.org/10.1126/science.aax5863. 31. Shlush, Liran I., et al. “Identification of Pre-Leukaemic Haematopoietic Stem Cells in Acute Leukaemia”. Nature, vol. 506, no 7488, fevereiro de 2014, p. 328–33. PubMed, https://doi.org/10.1038/nature13038. 32. Schuurhuis, Gerrit J., et al. “Minimal/Measurable Residual Disease in AML: A Consensus Document from the European LeukemiaNet MRD Working Party”. Blood, vol. 131, no 12, março de 2018, p. 1275–91. PubMed, https://doi.org/10.1182/blood- 2017-09-801498. 90 33. Cao, Tingyong, et al. “The FLT3-ITD Mutation and the Expression of Its Downstream Signaling Intermediates STAT5 and Pim-1 Are Positively Correlated with CXCR4 Expression in Patients with Acute Myeloid Leukemia”. Scientific Reports, vol. 9, no 1, agosto de 2019, p. 12209. PubMed, https://doi.org/10.1038/s41598-019-48687-z. 34. Santos, Geovana Cristine de Araujo, e Natália de Morais Cordeiro. A imunofenotipagem no diagnóstico da leucemia mieloide aguda. dezembro de 2021. doi.org (Datacite), https://doi.org/10.5281/ZENODO.7447454. 35. Helman, Ricardo, et al. “Acute myeloid leukemia: update in diagnosis and treatment in Brazil”. Einstein (São Paulo), vol. 9, no 2, junho de 2011, p. 179–83. DOI.org (Crossref), https://doi.org/10.1590/s1679-45082011ao1853. 36. Moualla, Yahia, et al. “Evaluating the Clinical Significance of FLT3 Mutation Status in Syrian Newly Diagnosed Acute Myeloid Leukemia Patients with Normal Karyotype”. Heliyon, vol. 8, no 11, novembro de 2022, p. e11858. PubMed, https://doi.org/10.1016/j.heliyon.2022.e11858. 37. Blackburn, Lisa M., et al. “Acute Leukemia: Diagnosis and Treatment”. Seminars in Oncology Nursing, vol. 35, no 6, dezembro de 2019, p. 150950. PubMed, https://doi.org/10.1016/j.soncn.2019.150950. 38. Döhner, Hartmut, et al. “Diagnosis and Management of AML in Adults: 2017 ELN Recommendations from an International Expert Panel”. Blood, vol. 129, no 4, janeiro de 2017, p. 424–47. PubMed, https://doi.org/10.1182/blood-2016-08-733196. 39. César Dos Santos, Gabriela. “Caracterização da LMA por meio de técnicas citogenéticas e biomoleculares: uma revisão bibliográfica”. Revista EVS - Revista de Ciências Ambientais e Saúde, vol. 48, no 1, janeiro de 2022, p. 8739. DOI.org (Crossref), https://doi.org/10.18224/evs.v48i1.8739. 40. Ferrara, Felicetto, e Charles A. Schiffer. “Acute Myeloid Leukaemia in Adults”. Lancet (London, England), vol. 381, no 9865, fevereiro de 2013, p. 484–95. PubMed, https://doi.org/10.1016/S0140-6736(12)61727-9. 41. Estey, Elihu H. “Acute Myeloid Leukemia: 2021 Update on Risk-Stratification and Management”. American Journal of Hematology, vol. 95, no 11, novembro de 2020, p. 1368–98. PubMed, https://doi.org/10.1002/ajh.25975. 42. Patnaik, Mrinal M. “The Importance of FLT3 Mutational Analysis in Acute Myeloid Leukemia”. Leukemia & Lymphoma, vol. 59, no 10, outubro de 2018, p. 2273–86. DOI.org (Crossref), https://doi.org/10.1080/10428194.2017.1399312. 91 43. Bullinger, Lars, et al. “Genomics of Acute Myeloid Leukemia Diagnosis and Pathways”. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, vol. 35, no 9, março de 2017, p. 934–46. PubMed, https://doi.org/10.1200/JCO.2016.71.2208. 44. Cruz NG. Análise de Mutações nos genes NPM1 e sua associação com as caracteristicas clinica e biológicas em pacientes com leucemia mielóide aguda. Universidade Federal de Minas Gerais. 2014;156. 45. Velloso, Elvira Deolinda Rodrigues Pereira, et al. “Molecular and Cytogenetic Abnormalities in Acute Myeloid Leukemia: Review and Case Studies”. Einstein (Sao Paulo, Brazil), vol. 9, no 2, junho de 2011, p. 184–89. PubMed, https://doi.org/10.1590/S1679-45082011AO2041. 46. The Cancer Genome Atlas Research Network. “Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia”. New England Journal of Medicine, vol. 368, no 22, maio de 2013, p. 2059–74. DOI.org (Crossref), https://doi.org/10.1056/NEJMoa1301689. 47. Benton, Christopher B., et al. “Janus Kinase 2 Variants Associated with the Transformation of Myeloproliferative Neoplasms into Acute Myeloid Leukemia”. Cancer, vol. 125, no 11, junho de 2019, p. 1855–66. PubMed, https://doi.org/10.1002/cncr.31986. 48. Rosnet, O., et al. “Isolation and Chromosomal Localization of a Novel FMS-like Tyrosine Kinase Gene”. Genomics, vol. 9, no 2, fevereiro de 1991, p. 380–85. PubMed, https://doi.org/10.1016/0888-7543(91)90270-o. 49. Drexler, Hans G., e Hilmar Quentmeier. “FLT3: Receptor and Ligand”. Growth Factors (Chur, Switzerland), vol. 22, no 2, junho de 2004, p. 71–73. PubMed, https://doi.org/10.1080/08977190410001700989. 50. National Center for Biotechnology Information. FLT3 - receptor tirosina quinase 3 relacionado ao fms. 2023. p. https://www.ncbi.nlm.nih.gov/gene/?term=flt3. Acessao em janeir de 2023. 51. Ribeiro, Sara, et al. “Genomic Abnormalities as Biomarkers and Therapeutic Targets in Acute Myeloid Leukemia”. Cancers, vol. 13, no 20, outubro de 2021, p. 5055. PubMed, https://doi.org/10.3390/cancers13205055. 52. Gilliland, D. Gary, e James D. Griffin. “The Roles of FLT3 in Hematopoiesis and Leukemia”. Blood, vol. 100, no 5, setembro de 2002, p. 1532–42. PubMed, https://doi.org/10.1182/blood-2002-02-0492. 92 53. Jensen, Christopher E., et al. “Clinical and Molecular Features of FLT3 Juxtamembrane Domain Missense Mutations in Acute Myeloid Leukaemia”. Journal of Cellular and Molecular Medicine, vol. 26, no 24, dezembro de 2022, p. 6079–82. PubMed, https://doi.org/10.1111/jcmm.17608. 54. Tecik, Melisa, e Aysun Adan. “Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches”. OncoTargets and Therapy, vol. 15, 2022, p. 1449–78. PubMed, https://doi.org/10.2147/OTT.S384293. 55. Kazi, Julhash U., e Lars Rönnstrand. “FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications”. Physiological Reviews, vol. 99, no 3, julho de 2019, p. 1433–66. PubMed, https://doi.org/10.1152/physrev.00029.2018. 56. Gebru, Melat T., e Hong-Gang Wang. “Therapeutic Targeting of FLT3 and Associated Drug Resistance in Acute Myeloid Leukemia”. Journal of Hematology & Oncology, vol. 13, no 1, novembro de 2020, p. 155. PubMed, https://doi.org/10.1186/s13045-020- 00992-1. 57. Kiyoi, Hitoshi, et al. “FLT3 Mutations in Acute Myeloid Leukemia: Therapeutic Paradigm beyond Inhibitor Development”. Cancer Science, vol. 111, no 2, fevereiro de 2020, p. 312–22. PubMed, https://doi.org/10.1111/cas.14274. 58. Parcells, Bertrand W., et al. “FMS-like Tyrosine Kinase 3 in Normal Hematopoiesis and Acute Myeloid Leukemia”. Stem Cells (Dayton, Ohio), vol. 24, no 5, maio de 2006, p. 1174–84. PubMed, https://doi.org/10.1634/stemcells.2005-0519. 59. Tarantini, Francesco, et al. “Can the New and Old Drugs Exert an Immunomodulatory Effect in Acute Myeloid Leukemia?” Cancers, vol. 13, no 16, agosto de 2021, p. 4121. PubMed, https://doi.org/10.3390/cancers13164121. 60. Yohe, Sophia. “Molecular Genetic Markers in Acute Myeloid Leukemia”. Journal of Clinical Medicine, vol. 4, no 3, março de 2015, p. 460–78. PubMed, https://doi.org/10.3390/jcm4030460. 61. Whitman, Susan P., et al. “FLT3 D835/I836 Mutations Are Associated with Poor Disease-Free Survival and a Distinct Gene-Expression Signature among Younger Adults with de Novo Cytogenetically Normal Acute Myeloid Leukemia Lacking FLT3 Internal Tandem Duplications”. Blood, vol. 111, no 3, fevereiro de 2008, p. 1552–59. PubMed, https://doi.org/10.1182/blood-2007-08-107946. 62. Ghiaur, Gabriel, e Mark Levis. “Mechanisms of Resistance to FLT3 Inhibitors and the Role of the Bone Marrow Microenvironment”. Hematology/Oncology Clinics of North 93 America, vol. 31, no 4, agosto de 2017, p. 681–92. PubMed, https://doi.org/10.1016/j.hoc.2017.04.005. 63. Campregher, Paulo Vidal, et al. “Successful Treatment of Post-Transplant Relapsed Acute Myeloid Leukemia with FLT3 Internal Tandem Duplication Using the Combination of Induction Chemotherapy, Donor Lymphocyte Infusion, Sorafenib and Azacitidine. Report of Three Cases”. Einstein (Sao Paulo, Brazil), vol. 15, no 3, 2017, p. 355–58. PubMed, https://doi.org/10.1590/S1679-45082017RC3784. 64. Cruz, Nathália Gomide, et al. “Characterization of NPM1, FLT3, and IDH1 Mutations in Adult Patients with Acute Myeloid Leukemia: A Brazilian Cohort Study”. Leukemia & Lymphoma, vol. 57, no 12, dezembro de 2016, p. 2901–04. PubMed, https://doi.org/10.3109/10428194.2016.1165811. 65. Friedman, Ran. “The Molecular Mechanisms behind Activation of FLT3 in Acute Myeloid Leukemia and Resistance to Therapy by Selective Inhibitors”. Biochimica Et Biophysica Acta. Reviews on Cancer, vol. 1877, no 1, janeiro de 2022, p. 188666. PubMed, https://doi.org/10.1016/j.bbcan.2021.188666. 66. Zhang, Weiguo, et al. “Reversal of Acquired Drug Resistance in FLT3-Mutated Acute Myeloid Leukemia Cells via Distinct Drug Combination Strategies”. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, vol. 20, no 9, maio de 2014, p. 2363–74. PubMed, https://doi.org/10.1158/1078-0432.CCR- 13-2052pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.