DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/5708
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAlmeida, Alex Santos de-
dc.date.available2024-06-06-
dc.date.available2024-06-07T15:43:29Z-
dc.date.issued2020-12-15-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/5708-
dc.description.abstractBacteriophages are viruses that only infect bacteria, do not interact with human cells and are the most abundant microorganisms on the planet. The use of phages has been considered as an alternative measure for the treatment of bacterial infections, mainly against multiresistant antibiotic strains. Salmonella and Shigella are enteropathogens commonly spread by water and food contaminated with fecal material; have a very large intestinal epithelial invasion power, being the most common causes of bacillary dysentery. The present work aimed to isolate and characterize lytic bacteriophages against Salmonella and Shigella strains. The bacteriophages were isolated from water sources, contaminated with domestic effluents, in the city of Manaus- Am. Two serovars of Salmonella enterica subspecies enterica and shigella sonnei were used as hosts for the isolation of species-specific phages; however, their respective infection capabilities have also been analyzed for other bacteria. The isolated phages were analyzed for the nature of their genetic material, infection cycle, morphology and stability. Altogether five lytic bacteriophages were isolated, from Salmonella Typhi, Salmonella Enteritidis and Shigella sonnei, all bacteriophages were able to infect at least ten other bacterial strains; the curves showed the relationships between different ranges of multiplicity of infection (MOI), and determined that the isolated viruses have a relatively low latency period, with releases of high amounts of new viral particles in the "busrt size", the transmission electron microscopy revealed that four of the phages belong to the family Siphoviridae, while a single phage has characteristics of Myoviridae; in the analysis of the genetic material it is not possible to differentiate the phages isolated for S. sonnei by RFLP, however all the other phages had different digestion profiles with the restriction enzymes used. The new phage characterized, in the present work, have promising characteristics to infect and generate lysis not only in host bacteria, but in other species of enterobacteria.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectBacteriófagospt_BR
dc.subjectSalmonella Typhipt_BR
dc.subjectShiguella sonneipt_BR
dc.subjectEnterobacteriaceapt_BR
dc.subjectTerapia Fagicapt_BR
dc.subjectBacteriophagespt_BR
dc.titleIsolamento e caracterização de bacteriófagos líticos para duas espécies de enterobatérias: salmonella esterica subespécie enterica e shigella sonneipt_BR
dc.title.alternativeIsolation and characterization of lytic bacteriophages for two species of enterobacteria: salmonella esterica subspecies enterica and shigella sonneipt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2024-06-07T15:43:29Z-
dc.contributor.advisor-co1Oliveira, Hugo Valério Corrêa de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6595179051283009pt_BR
dc.contributor.advisor1Astolfi Filho, Spartaco-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2699190136695057pt_BR
dc.contributor.referee1Oliveira, Hugo Valério Corrêa de-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6595179051283009pt_BR
dc.contributor.referee2Procópio, Rudi Emerson de Lima-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2478199435796976pt_BR
dc.contributor.referee3Carmo, Edson Junior do-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5780309549588357pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5257152448428326pt_BR
dc.description.resumoRESUMO Os bacteriófagos são vírus que infectam exclusivamente bactérias, não interagem com células humanas e são os microrganismos mais abundantes no planeta. O uso de fagos vem sendo considerado como uma medida alternativa para o tratamento de infecções bacterianas, principalmente contra cepas multirresistentes a antibióticos. Salmonella e Shigella são enteropatógenos comumente disseminados por água e alimentos contaminados com material fecal, possuem um poder de invasão do epitélio intestinal muito grande, sendo as causas mais comuns de disenteria bacilar. O presente trabalho teve como objetivo isolar e caracterizar bacteriófagos líticos contra linhagens de Salmonella e Shigella. Os bacteriófagos foram isolados a partir de fontes hídricas, contaminadas com efluentes domésticos, na cidade de Manaus-Am. Dois sorovares de Salmonella enterica subespécie enterica e shigella sonnei foram utilizadas como hospedeiras para o isolamento de fagos espécie-específicos, contudo, suas respectivas capacidades de infecções também foram analisadas para outras bactérias. Os fagos isolados foram analisados quanto à natureza de seu material genético, ciclo de infecção, morfologia e estabilidade. Ao todo foram isolados cinco bacteriófagos líticos, a partir de Salmonella Typhi, Salmonella Enteritidis e Shigella sonnei, todos os bacteriófagos foram capazes de infectar pelo menos outras nove linhagens bacterianas; as curvas apontaram as relações entre diferentes faixas de multiplicidade de infecção (MOI), e aferiram que os vírus isolados possuem um período de latência relativamente baixo, com liberações de altas quantidades de novas partículas virais no “busrt size”, a microscopia eletrônica de transmissão revelou que quatro dos fagos pertencem a família Siphoviridae, enquanto um único fago possui características de Myoviridae; na análise do material genético não possível diferir os fagos isolados para S. sonnei por RFLP, porém todos os outros fagos possuíam perfis de digestão distintos com as enzimas de restrição usadas. Os novos fagos caracterizados, no presente trabalho, possuem características promissoras para infectar e gerar lise não somente nas bactérias hospedeiras, como em outras espécies de enterobactériaspt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGMBT - PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA E RECURSOS NATURAIS DA AMAZÔNIApt_BR
dc.relation.references54 BRYAN, D. et al. Bacteriophage T4 Infection of Stationary Phase E . coli : Life after Log from a Phage Perspective. Frontiers in Microbiology, v. 7, n. September, p. 1–12, 2016. CAMPIONI, F. et al. Changing of the Genomic Pattern of Salmonella Enteritidis Strains Isolated in Brazil Over a 48 year- period revealed by Whole Genome SNP Analyses. scientific reports, v. 8, n. September 2017, p. 1–7, 2018. CAMPIONI, F. et al. Phenotypic analyses of Salmonella enterica serovar Enteritidis strains isolated in the pre- and post-epidemic period in Brazil. brazilian journal of microbiology, 2020. CANESTRARI, J. et al. Deciphering the specific interaction between the acyl carrier protein IacP and the T3SS-major hydrophobic translocator SipB from Salmonella. FEBS letters, p. 1– 15, 2019. CHEN, Y. et al. Can . J . Microbiol . TUFTS UNIV LIBRARY on 07 / 12 / 18 For personal use only . This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition . It may differ from the final offic. Can. J. microbiol., p. 1–25, 2018. CHONG, A. et al. A role for the Salmonella Type III Secretion System 1 in bacterial adaptation to the cytosol of epithelial cells. molecular microbiology, v. 112, n. August, p. 1270–1283, 2019. CUNHA, F.; MARIA, T.; BARBOSA, M. Shigella sp : UM PROBLEMA DE. Higiene Alimentar, v. 31, p. 52–57, 2017. DEKKER, J. P.; FRANK, K. M. S a l m o n e l l a , Shigella , a n d Yer si n ia. cross mark, v. 35, p. 225–246, 2015. DOORE, S. M. et al. Bacteriophage Receptor Proteins of Gram-Negative Bacteria. Reference Module in Life Sciences, p. 1–11, 2019. DOSS, J. et al. A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses, v. 9, p. 2–10, 2017. DUNCAN-LOWEY, J. K. et al. Report Shigella flexneri Disruption of Cellular Tension Promotes Intercellular Spread ll ll Shigella flexneri Disruption of Cellular Tension Promotes Intercellular Spread. CellReports, v. 33, n. 8, p. 108409, 2020. Folha: 69 Documento 30CC.6EB8.6394.E9E5 assinado por: ALEX SANTOS DE ALMEIDA:015******** em 04/06/2024 às 21:30 utilizando assinatura por login/senha. 55 DUNSTAN, R. A. et al. The flagellotropic bacteriophage YSD1 targets Salmonella Typhi with a Chi-like protein tail fibre. molecular microbiology, v. 0, p. 1–16, 2019. ENG, S. et al. Frontiers in Life Science Salmonella : A review on pathogenesis , epidemiology and antibiotic resistance. Frontiers in Life Science, v. 3769, 2015. ESPINOZA, R. A. et al. Differential roles for pathogenicity islands SPI - 13 and SPI - 8 in the interaction of Salmonella Enteritidis and Salmonella Typhi with murine and human macrophages. Biological Research, p. 1–7, 2017. EXENI, R. A. et al. Pathogenic role of inflammatory response during Shiga toxin-associated hemolytic uremic syndrome ( HUS ). Pediatric nephrology, 2018. FREGOLINO, E. et al. Occurrence and structure of cyclic Enterobacterial Common Antigen in Escherichia coli O157 : H À. Carbohydrate Research, v. 363, p. 29–32, 2012. FURFARO, L. L.; PAYNE, M. S.; CHANG, B. J. Bacteriophage Therapy : Clinical Trials and Regulatory Hurdles. Frontiers in cellular and infection microbiology, v. 8, n. October, p. 1– 7, 2018. GABISONIA, T. et al. Characterization of New Bacteriophages of Salmonella and Shigella. bulletin of the gerogian national academy of sciences, v. 14, n. 2, 2020. GADAGKAR, R.; GOPINATHAN, K. P. Bacteriophage burst size during multiple infections Bacteriophage burst size during multiple infections. journal of biosciences, n. September 1980, 2014. GARRIDO-MAESTU, A. et al. Speci fi c detection of viable Salmonella Enteritidis by phage ampli fi cation combined with qPCR ( PAA-qPCR ) in spiked chicken meat samples. Food Control, v. 99, n. October 2018, p. 79–83, 2019. GOEBEL, F. studies on bacteriophage. p. 255–265, 1949. GOODRIDGE, L. D.; BISHA, B. Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Landes Bioscience Phage-based, v. 1, n. 3, p. 130–137, 2011. GREER, G. G. Effects of Phage Concentration , Bacterial Density , and Temperature on Phage Control of Beef Spoilage. research note, v. 53, n. 4, p. 1226–1227, 1988. Folha: 70 Documento 30CC.6EB8.6394.E9E5 assinado por: ALEX SANTOS DE ALMEIDA:015******** em 04/06/2024 às 21:30 utilizando assinatura por login/senha. 56 GROSSA, P. Diversidade microbiológica e suscetibilidade em cepas de Escherichia coli uropatogênica diagnosticadas em Ponta Grossa, Paraná. Brazilian Journal of clinical Analyses, n. January, 2016. GUTEMA, F. D. Prevalence and Serotype Diversity of Salmonella in Apparently Healthy Cattle : Systematic Review and. frontiers in veterinary science, v. 6, n. April, p. 1–11, 2019. HAMDI, S. et al. Characterization of two polyvalent phages infecting Enterobacteriaceae. Nature Publishing Group, n. December 2016, p. 1–12, 2017. HARADA, L. K. et al. Biotechnological applications of bacteriophages : State of the art. Microbiological Research, v. 213, n. February, p. 38–58, 2018. HARVEY, R. R. et al. Epidemiology of Salmonella enterica Serotype Dublin Infections among Humans , United States , 1968 – 2013. Emerging Infectious Diseases, v. 23, n. 9, 2018. HENRIQUE, P. et al. Molecular characterization of virulence and antimicrobial resistance profile of Shigella species isolated from children with moderate to severe diarrhea in northeastern Brazil. Diagnostic Microbiology & Infectious Disease, 2017. HUANG, C. et al. Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices Chenxi. college of food science, 2018. HUANG, C. et al. Isolation , Characterization , and Application of Bacteriophage LPSE1 Against Salmonella enterica in Ready to Eat ( RTE ) Foods. Frontiers in Microbiology, v. 9, n. May, p. 1–11, 2018. HYMAN, P.; STATES, U. Bacteriophage : Overview. Department of Microbiology, n. April, p. 1–18, 2019. ISLAM, S. et al. Application of a Broad Range Lytic Phage LPST94 for Biological Control of Salmonella in Foods. microorganisms, 2020. JAMAL, M. et al. Characterization of new Myoviridae bacteriophage WZ1 against multi-drug resistant ( MDR ) Shigella dysenteriae. journal of basic microbiology, n. Cdc, p. 1–12, 2014. JI, J. et al. Identification of a novel phage targeting methicillin-resistant Staphylococcus aureus In vitro and In vivo. microbial pathogenesis, 2020. JNEID, B.; ROUAIX, A. SipD and IpaD induce a cross-protection against Shigella and Salmonella infections. PLoS Neglected Tropical Diseases, p. 1–18, 2020. Folha: 71 Documento 30CC.6EB8.6394.E9E5 assinado por: ALEX SANTOS DE ALMEIDA:015******** em 04/06/2024 às 21:30 utilizando assinatura por login/senha. 57 JOHNSON, R. et al. crossm SptP of Salmonella enterica Serovar. journal of bateriology, v. 199, n. 4, p. 1–18, 2017. JR, P. E. P.; CORTINES, J. R. ScienceDirect Phage assembly and the special role of the portal protein. Current Opinion in Virology, 2018. JUN, J. W. et al. Bacteriophage application to control the contaminated water with Shigella. Nature Publishing Group, p. 1–7, 2016. JURCZAK-KUREK, A. et al. Biodiversity of bacteriophages : morphological and biological properties of a large group of phages isolated from urban sewage. scientific reports, n. September, p. 1–17, 2016. KAKASIS, A.; PANITSA, G.; PANITSA, G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. journal of antimicrobial agents, 2018. KELMANI, C. R.; CHIDRE, P. Shigellosis : A Conformity Review of the Microbiology , Pathogenesis and Epidemiology with Consequence for Prevention and Management issues. Journal of pure apllied microbiology, v. 12, n. March, p. 405–417, 2018. KIM, S. I. et al. Secretion of Salmonella Pathogenicity Island 1-Encoded Type III Secretion System Effectors by Outer Membrane Vesicles in Salmonella enterica Serovar Typhimurium. Frontiers in Microbiology, v. 9, n. November, p. 1–13, 2018. KIM, S. et al. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria §. journal of microbiology, v. 56, p. 1–9, 2018. KIPPER, D. et al. Salmonella serotype assignment by sequencing analysis of intergenic regions of ribosomal RNA operons. Poltry Science Assiation, n. 1–10, 2019. KOSEOGLU, V. et al. The autotransporter IcsA promotes Shigella flexneri biofilm formation in presence of bile. American Society for Microbiology, n. April, 2019. KOTLOFF, K. L. et al. Seminar Shigellosis. The lancet, v. 6736, n. 17, 2017. KROPINSKI, A. M.; PRANGISHVILI, D.; LAVIGNE, R. Opinion Position paper : The creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. enviromental microbiology, v. 11, p. 2775–2777, 2009. LAMPEL, K. A.; FORMAL, S. B.; MAURELLI, A. T. A Brief History of Shigella. EcoSalPlus, 2018. Folha: 72 Documento 30CC.6EB8.6394.E9E5 assinado por: ALEX SANTOS DE ALMEIDA:015******** em 04/06/2024 às 21:30 utilizando assinatura por login/senha. 58 LAVEBRATT, C.; GISSLER, M. Early exposure to antibiotic drugs and risk for psychiatric disorders : a population-based study. Translational Psychiatry, 2019. LEE, D. et al. The Novel Enterococcus Phage vB _ EfaS _ HEf13 Has Broad Lytic Activity Against Clinical Isolates of Enterococcus faecalis Bacterial Strains and Culture Conditions. Frontiers in Microbiology, v. 10, n. December, p. 1–14, 2019. LEE, S. et al. Dual Immunization with SseB/Flagellin Provides Enhanced Protection against Salmonella Infection Mediated by Circulating Memory Cells. journal of immunology, 2017. LETAROV, A. V; KULIKOV, E. E. Adsorption of Bacteriophages on Bacterial Cells. Uspekhi Biologicheskoi Khimii, v. 82, n. 13, p. 1632–1658, 2017. LI, B.; LIU, H.; WANG, W. Multiplex real-time PCR assay for detection of Escherichia coli O157 : H7 and screening for non-O157 Shiga toxin-producing E . coli. BMC microbiology, p. 1–13, 2017. LI, Y. et al. A sensitive electrochemical strategy via multiple amplification reactions for the detection of E. coli O157: H7. Biosensors and Bioelectronics, p. 111752, 2019. LIU, W. et al. to modulate host function. Nature Microbiology, [s.d.]. LÓPEZ-CUEVAS, O. et al. Characterization of bacteriophages with a lytic effect on various Salmonella serotypes and Escherichia coli O157 : H7. Can. J. microbiol., v. 1051, n. 2508, p. 1042–1051, 2011. LU, H. et al. Genomic characterization of a novel virulent phage infecting Shigella fi exneri and isolated from sewage. Virus Research, v. 283, n. April, 2020. MAI, V. et al. Bacteriophage administration signi fi cantly reduces Shigella colonization and shedding by Shigella -challenged mice without deleterious side effects and distortions in the gut microbiota. bacteriophage, n. December, p. 1–6, 2015. MAMBU, J. et al. An Updated View on the Rck Invasin of Salmonella : Still Much to Discover. Frontiers in cellular and infection microbiology, v. 7, n. December, p. 1–10, 2017. MASERATI, A. et al. General response of Salmonella enterica serovar Typhimurium to desiccation : A new role for the virulence factors sopD and sseD in survival. PLoS ONE, p. 1– 23, 2017. Folha: 73 Documento 30CC.6EB8.6394.E9E5 assinado por: ALEX SANTOS DE ALMEIDA:015******** em 04/06/2024 às 21:30 utilizando assinatura por login/senha. 59 MASZEWSKA, A. Differentiation of polyvalent bacteriophages specific to uropathogenic proteus mirabilis strains based on the host range. ACTA, 2016. MEDEIROS, C. et al. Genotypic diversity , pathogenic potential and the resistance profile of Salmonella Typhimurium strains isolated from humans and food from 1983 to 2013 in Brazil. Journal of Medical Microbiology, v. 1994, p. 1395–1407, 2015. MEIKLE, L. M. et al. SipA activation of caspase-3 is a decisive mediator of host cell survival at early stages of Salmonella Typhimurium infection. infection and immunity, n. June, 2017. MERABISHVILI, M. et al. Digitized fluorescent RFLP analysis ( fRFLP ) as a universal method for comparing genomes of culturable dsDNA viruses : application to bacteriophages. research microbiology, v. 158, 2007. MIC, S. et al. Capsid Structure of a Freshwater Cyanophage Article Capsid Structure of a Freshwater. cell press, p. 1508–1516, 2019. MIKALOVÁ, L.; BOSA, J. Novel Temperate Phages of Salmonella enterica subsp . salamae and subsp . diarizonae and Their Activity against Pathogenic S . enterica subsp . enterica Isolates. PLoS ONE, n. V, p. 1–14, 2017. MIRANDA, A. L.; CORDEIRO, S. M.; REIS, J. N. Phenotypic and genotypic characterization of Salmonella spp . isolated from foods and clinical samples in Brazil. anais da academia brasileira de ciencias, v. 89, p. 1143–1153, 2017. MOYE, Z. D.; WOOLSTON, J.; SULAKVELIDZE, A. Bacteriophage Applications for Food Production and Processing. Viruses, v. 10, p. 1–22, 2018. NARAYANAN, S.; IBRAHIM, S.; AHAMED, B. by Molecular Dynamics Simulation. Informatics in Medicine Unlocked, 2017. NETO, W. S.; CORBELLINI, L. G.; HALD, T. Estimativa de casos de salmonelose humana atribuída às fontes de alimento de origem animal. Anais da VIII SEMANÍSTICA, 2017. NISA, I. et al. Shigella flexneri : an emerging pathogen. folia microbiologica, 2020. NORTH, O. I. et al. Phage tail fibre assembly proteins employ a modular structure to drive the correct folding of diverse fibres. nature microbiology, 2019. NYHOLM, O.; SHIGA, I. C. Characterization of Shigella sonnei Isolate Carrying Shiga Toxin 2–Producing Gene. letters, v. 21, n. 5, p. 2–4, 2015. Folha: 74 Documento 30CC.6EB8.6394.E9E5 assinado por: ALEX SANTOS DE ALMEIDA:015******** em 04/06/2024 às 21:30 utilizando assinatura por login/senha. 60 OBAYES, M. S.; AL-BERMANI, O. K.; RAHIM, S. A. Genetic detection of in vA , sipB , SopB and sseC genes in Salmonella spp isolated from diarrheic children patients. EurAsian Journal of BioSciences, v. 3091, n. April, p. 3085–3091, 2020. PAULO, L. et al. Bacteriophages with potential to inactivate Salmonella Typhimurium : use of. Virus Research, 2016. PAWLOWSKI, A. Thermus Bacteriophage P23-77 : Key Member of a Novel , but Ancient Family of Viruses from Extreme Environments Alice Pawlowski Thermus Bacteriophage P23- 77 : Key Member of a Novel , but Ancient Family of Viruses from Extreme Environments. STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE, 2015. PETSONG, K.; VONGKAMJAN, K. Lysis Profiles of Salmonella Phages on Salmonella Isolates from Various Sources and Efficiency of a Phage Cocktail against S . Enteritidis and. microorganisms, 2019. PINHEIRO, F. et al. Infection , Genetics and Evolution Virulence traits and expression of bstA , fliC and sopE2 in Salmonella Dublin strains isolated from humans and animals in Brazil. Infection, Genetics and Evolution, v. 80, n. September 2019, p. 104193, 2020. PROFILE, S. E. E. A review on shigellosis : Pathogenesis and antibiotic resistance Review Article A review on shigellosis : Pathogenesis and antibiotic resistance. Drug Invention Today, n. May, 2020. QIAN, H. et al. Discovery of seven novel mutations of gyrB , parC and parE in Salmonella Typhi and Paratyphi strains from Jiangsu Province of China. scientific reports, v. 10, p. 1–8, 2020. QUINTELA, P. et al. Molecular characterization of virulence and antimicrobial resistance profile of Shigella species isolated from children with moderate to severe diarrhea in northeastern Brazil. Diagnostic microbiology & infectious disease, 2017. RADFORD, D. et al. Characterization of antimicrobial properties of Salmonella phage Felix O1 and Listeria phage A511 embedded in xanthan coatings on Poly ( lactic acid ) fi lms. Food Microbiology, v. 66, p. 117–128, 2017. RASTOGI, V.; GAUR, P. K.; VERMA, A. An Overview on Bacteriophages: A Natural Nanostructured Antibacterial Agent. bentham science, v. 15, p. 3–20, 2018. Folha: 75 Documento 30CC.6EB8.6394.E9E5 assinado por: ALEX SANTOS DE ALMEIDA:015******** em 04/06/2024 às 21:30 utilizando assinatura por login/senha. 61 RICHARD K. GAST AND ROBERT E. PORTER, J. Salmonella Infections. Diseases of Poultry, 2020. RÖDER, J.; HENSEL, M. Presence of SopE and mode of infection result in increased Salmonella -containing vacuole damage and cytosolic release during host cell infection by Salmonella enterica. celular microbiology, n. July 2019, p. 1–17, 2020. SCHOLL, D. Phage Tail – Like Bacteriocins. annual review of virology, 2017. SERIBELLI, A. et al. Molecular and phenotypic characterization of strains of Shigella sonnei isolated over 31 years suggests the circulation of two prevalent subtypes in S ~. journal medical microbiology, p. 666–677, 2016. SETHUVEL, D. P. M. et al. Update on : Shigella new serogroups / serotypes and their antimicrobial resistance. applied microbiology, 2016. SHAHIN, K. et al. Microbial Pathogenesis Isolation , characterization , and PCR-based molecular identi fi cation of a siphoviridae phage infecting Shigella dysenteriae. microbial pathogenesis, v. 131, n. March, p. 175–180, 2019. SHAHIN, K.; BOUZARI, M.; WANG, R. Isolation , characterization and genomic analysis of a novel lytic bacteriophage vB _ SsoS-ISF002 infecting Shigella sonnei and Shigella flexneri. journal medical microbiology, p. 376–386, 2018. SILVA, A. et al. No Title. EEDIC, n. I, 2017. SILVA, J.; MICROBIOLOGY, F.; ADVANCE, L. FEMS Microbiology Letters Advance Access published January 10, 2016. FEMS Microbiology, 2016. SIMPSON, K. M. J. et al. Diversity of Salmonella serotypes from humans , food , domestic animals and wildlife in New South Wales , Australia. BMC Infectious Diseases, v. 18, p. 1– 11, 2018. SOFFER, N. et al. Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLoS Neglected Tropical Diseases, n. i, p. 1–11, 2017. STALIN, N.; SRINIVASAN, P. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Veterinary Microbiology, 2017. SUMMER, E. J. et al. Rz / Rz1 Lysis Gene Equivalents in Phages of Gram-negative Hosts. jmb, p. 1098–1112, 2007pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.