DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/4440
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCosta, Thainá Cristina Cardoso-
dc.date.available2022-12-12-
dc.date.available2022-12-13T15:34:35Z-
dc.date.issued2020-08-21-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/4440-
dc.description.abstractCurrently, it is known that Chronic Myeloproliferative Neoplasms (MPNs) are associated with clonal abnormalities, one of which is BCR-ABL1. The oncoprotein BCR-ABL1 is the result of a reciprocal translocation of chromosomes 9 and 22 and has a constitutive tyrosine kinase (TK) activity. Common in over 95% of patients with chronic myeloid leukemia, it can also be present in other NPMs. Although there are national and international scientific studies on the frequency of BCR-ABL1 in MPN patients, no research was found in the literature regarding the distribution and types of BCR-ABL1 transcripts in the region of the state of Amazonas. Objectives: To describe the clinical, laboratory and main comorbidities of patients positive for qualitative BCR-ABL1 p210 treated at the HEMOAM Foundation. Material and Methods: A retrospective and cross-sectional study was carried out, using clinical and laboratory data from 135 patients under suspicion of chronic myeloid leukemia, seen at HEMOAM. The MannWhitney test was used to compare the groups studied. For the survival analysis, the Kaplan- Meier method (log-rank test) was used to demonstrate the time of death in 16 months after the result of the qualitative examination for BCR-ABL1. Results: The 135 patients studied, 97 (71.9%) were positive for BCR-ABL1, 29 (21.5%) negative for BCR-ABL1 and 9 (6.6%) samples from patients who did not present - if satisfactory for the analysis. 71 (56.3%) patients were male and 59 (43.7%) female. The mean age between the groups was around 48.95 ± 19.24 (BCR-ABL1 +) and 53.41 ± 17.43 (BCR-ABL1-). It was also noted that the transcript b3a2 (63.9%) was the most frequent, followed by the transcript b2a2 (32%), b3a3 (2.1%), b3a2 /b2a2 (1%) and b3a2 / b3a3 (1%). It was observed in the hematological and biochemical profile that leukocytes (p <0.0077), blasts (p <0.0140), promyelocytes (p <0.0478), metamyelocytes (p <0.0290), neutrophil rod (p < 0.0061), basophils (p <0.0027) and platelets (p <0.0352) were significantly higher in BCR-ABL1 + patients compared to BCR-ABL1- patients. In the analysis between the transcripts b3a2 and b2a2, a statistically significant increase was observed in the percentage of myelocytes (p <0.0181) and metamyelocytes (p <0.0256) in the b3a2 group in relation to the b2a2 group. As for the other variables in the profiles, there were no notable statistical differences in all groups studied. Regarding the presence of comorbidities, Arterial Hypertension and Diabetes Mellitus were the most frequent in all studied groups. We did not observe statistical significance when comparing the groups BCR-ABL1 + and BCR-ABL1- in the analysis of survival. Conclusion: The b3a2 transcript is the most frequent within the population of BCR-ABL1-positive patients in the state of Amazonas and seems to be more associated with a higher leukocyte profile (myelocytes and metamyelocytes), since it has a lower tyrosine kinase activity than the b2a2 transcript. In addition, systemic arterial hypertension and diabetes mellitus seem to be more frequent in these patientspt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectBCR-ABL1pt_BR
dc.subjectb3a2, b2a2pt_BR
dc.subjectNMPpt_BR
dc.subjectLMCpt_BR
dc.subjectTranscritospt_BR
dc.titlePerfil clínico e laboratorial de pacientes positivos para BCR-ABL1 no estado do Amazonaspt_BR
dc.title.alternativeClinical and laboratory profile of positive patients for BCR-ABL1 in the state of Amazonaspt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2022-12-13T15:34:35Z-
dc.contributor.advisor-co1Tarragô, Andréa Monteiro-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4644326589690231pt_BR
dc.contributor.advisor1Marie, Adriana Malheiro Alle-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2627415957053194pt_BR
dc.contributor.referee1Costa, Allyson Guimarães da-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7531662673281014pt_BR
dc.contributor.referee2Barros, Francisco Erivaldo Vidal-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3722691640950389pt_BR
dc.contributor.referee3Mourão, Lucivana Prata de Souza-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1135734404648095pt_BR
dc.description.resumoAtualmente, sabe-se que as Neoplasias Mieloproliferativas Crônicas (MPNs) estão associadas com anormalidades clonais, sendo uma delas o BCR-ABL1. A oncoproteína BCR- ABL1 é resultante de uma translocação recíproca dos cromossomos 9 e 22 e, apresenta uma constitutiva atividade de tirosinoquinase (TK). Frequente em mais 95% de pacientes com leucemia mieloide crônica, também pode estar presente em outras MPNs. Apesar de haver estudos científicos nacionais e internacionais sobre a frequência do BCR-ABL1 em pacientes MPNs, não foram encontrados na literatura pesquisas referentes a distribuição e tipos de transcritos BCR-ABL1 na região do estado do Amazonas. Objetivos: Descrever o perfil clínico, laboratorial e as principais comorbidades de pacientes positivos para BCR-ABL1 p210 qualitativo atendidos na Fundação HEMOAM. Material e Métodos: Realizou-se um estudo retrospectivo e transversal, utilizando dados clínicos e laboratoriais de 135 pacientes sob suspeita de leucemia mieloide crônica, atendidos no HEMOAM. Utilizou-se o teste de Mann Whitney para comparar os grupos estudados. Para a análise de sobrevida foi utilizado o método de Kaplan-Meier (teste de log-rank) para demonstrar o tempo de óbito em 16 meses após o resultado do exame qualitativo para BCR-ABL1. Resultados: Dos 135 pacientes estudados, 97 (71,9%) foram positivos para BCR-ABL1, 29 (21,5%) negativos para BCR-ABL1 e 9 (6,6%) foram excluídas amostras de pacientes que não apresentaram - se satisfatórias paraa análise. 71 (56,3%) pacientes eram do sexo masculino e 59 (43,7%) do sexo feminino. A média de idade entre os grupos que variou em torno de 48.95 ± 19.24 (BCR-ABL1+) e 53.41 ± 17.43 (BCR-ABL1-). Também notou - se que o transcrito b3a2 (63,9%) foi o mais frequente, seguido do transcrito b2a2 (32%), b3a3 (2,1%), b3a2/b2a2 (1%) e b3a2/b3a3 (1%). Foi observado no perfil hematológico e bioquímico que os leucócitos (p<0,0077), blastos (p<0,0140), promielócitos (p<0,0478), metamielócitos (p<0,0290), neutrófilo bastão (p<0,0061), basófilos (p<0,0027) e plaquetas (p<0,0352) foram significativamente mais elevados nos pacientes BCR- ABL1+ em comparação com pacientes BCR-ABL1-. Já na análise entre os transcritos b3a2 e b2a2, foi observado um aumento estatístico significativo no percentual de mielócitos (p<0,0181) e metamielócitos (p<0,0256) no grupo b3a2 em relação ao grupo b2a2. Quanto as outras variáveis dos perfis, não houve diferenças estatísticas notáveis em todos os grupos estudados. Em relação a presença de comorbidades, a Hipertensão Arterial e Diabetes Mellitus foram as mais frequentes em todos os grupos estudados. Não observamos uma significância estatística na comparação entre os grupos BCR-ABL1+ e BCR-ABL1- na análise de sobrevida. Conclusão: O transcrito b3a2 é o mais frequente dentro da população depacientes BCR-ABL1-positivo no estado do Amazonas e parece está mais associado a um maior perfil leucocitário (mielócitos e metamielócitos), visto que apresenta uma atividade tirosinoquinase inferior ao transcrito b2a2. Além disso, a hipertensão arterial sistêmica e diabetes mellitus parecem ser mais frequentes nesses pacientespt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references39 10. Bortolheiro TC, Chiattone CS. Leucemia Mieloide Crônica: história natural e classificação. Revista Brasileira de Hematologia e Hemoterapia. 2008; (30):3-7. 11. Sharma P, Kumar L, Mohanty S, Kochupillai V. Response to Imatinib mesylate in chronic myeloid leukemia patients with variant BCR-ABLfusion transcripts. Annals of Hematology. 2010; 89(3):241-247. 12. Hochhaus A, et al. Chronic myeloid leukemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017; 28(suppl_7):72-7. 13. Chen Y, Wang H, Kantarjian H, Cortes J. Trends in chronic myeloid leukemia incidence and survival in the United States from 1975 to 2009. Leuk Lymphoma. 2013; 54(7):1411-7. 14. Cortes J. Natural history and staging of chronic myelogenous leukemia. Hematol Oncol Clin North Am. 2004; 18(3):569-84. 15. Geary CG. The story of chronic myeloid leukaemia. Br J Haematol. 2000; 110(1):2-11. 16. Melo JV, Deininger MW. Biology of chronic myelogenous leukemia-- signaling pathways of initiation and transformation. Hematol Oncol Clin North Am. 2004; 18(3):545-68. 17. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2004; 96(10):3343-56. 18. American Cancer Society (internet). Chronic Myeloid Leukemia. Atlanta GA: American Cancer Society. c2018-2019 (update 2019 Jan 9; cited 2019 Jan 25). About chronic myeloid leukemia. Disponível em: https://www.cancer.org/cancer/chronic-myeloid-leukemia.html. 40 19. Hamerschlak N. Leucemia: fatores prognósticos e genética. J pediatr. 2008; 84(4):52-57. 20. Evolutivas F. Chronic Myeloid Leukemia. Revista Brasileira De Cancerologia. 2003; 49(1):5-8. 21. Bergantini, APF. Leucemia Mieloíde Crônica e o sistema Faz-Fasl. Revista Brasileira de Hematologia e Hemoterapia. 2005; 27(2):120-125. 22. Lopes NR, Abreu MT. Inibidores de Tirosino Quinase na leucemia Mielóide crônica. Revista Brasileira de Hematologia e Hemoterapia. 2009; 31(6):23-29. 23. Diamond J, Silva MG. Mechanisms of Resistance to BCR-ABL Kinase Inhibitors. Acta Med Port. 2013; 26(4):402-408. 24. Hochhaus A, La Rosée P. Imatinib therapy in chronic myelogenous leukemia: Strategies to avoid and overcome resistance. Leukemia. 2002; (16):2190-2196. 25. Pagnano P, Katia BB. Leucemia Mielóide crônica – causas de falha do tratamento com mesilato de imatinibe. Chronic Myeloid Leukemia – causes of treatment failure with imatinib. Revista Brasileira de Hematologia e Hemoterapia. 2008; 30. 26. Soverini S. BCR-ABL kinase domain mutation analysis in chronic myeloidleukemia patients treated with tyrosine kinase inhibitors: recommendations from anexpert panel on behalf of European LeukemiaNet. Blood. 2012; 118(5):1208-1215. 27. Narita M, Saito A, Kojima A, Iwabuchi M, Satoh N, Uchiyama T, et al. Quantification of BCR-ABL mRNA in plasma/serum of patients with chronic myelogenous leukemia. Int J Med Sci. 2012; 9(10):901-908. 28. Hanfstein B, Müller MC, Kreil S, Ernst T, Schenk T, Lorentz C, et al. Dynamics of mutant BCR-ABL-positive clones after cessation of tyrosine kinase inhibitor therapy. Haematologica. 2011; 96(3):360-6. 41 29. Sawyers CL. Chronic myeloid leukemia. The New England Journal of Medicine. 1999; 340(17):1330-1340. 30. Visani G. Dasatinib, even at low doses, is an effective second-line therapy for chronic myeloid leukemia patients resistant or intolerant to imatinib. Results from a real life-based Italian multicenter retrospective study on 114 patients. American Journal of Hematology. 2010; 85(12):960-963. 31. Inca (internet). Estatísticas de Câncer. Brasília-DF: Instituto Nacional do Câncer. c2018 (update 2018 Jan 9, cited 2019 Jan 26). Ministério da Saúde. Disponível em: https://www.inca.gov.br/. 32. Arber DA, Orazi A, Hasserjian R et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391–2405. 33. Kang Z, Liu Y, Xu L. et al. The Philadelphia chromosome in leukemogenesis. Chin J Cancer. 2016; 35, 48. 34. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nature. 2005; 5(3):72-183. 35. O’hare. Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nature. 2002; (12):513-526. 36. Faderl S. The biology of chronic myeloid leukemia. The New England Journal of Medicine. 1999; 341(3):164-172. 37. Deininger MW. Goldman JV, Melo NM. “The molecular biology of chronic myeloid leukemia”. Blood. 2000; 96(10):3343-3356. 38. Tefferi A, Gilliland DG. Oncogenes in Myeloproliferative Disorders. Cell Cycle. 2007; 6(5):550-566. 42 39. Quintás-Cardama A, Kantarjian H, Cortes J. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009; 16(2):122. 40. Advani AS, Pendergas AM. Bcr-Abl variants: biological and clinical aspects. Leukemia Research. 2002; 26(8):713-720. 41. Melo JV. The diversity of BCR-ABL fusion protein and their relationshipto leukemia phenotype. Blood. 2006; (88):2375-2384. 42. Schindler T. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science. 2000; (289):1938-1942. 43. Druker BJ, Lydon NB. Lessons learned from the development of an Abl tyrosine kinase inhibitor for chronic myelogenous leukemia. The Journal of Clinical Investigation. 2000; 105(1):3-7. 44. Eiring AM. Advances in the treatment of chronic myeloid leukemia. BMC Medicine. 2011; 9(99):1-6. 45. Lombardo L. Discovery of N-(2-Chloro-6-methylphenyl)-2-(6-(4- (20hydroxyethyl)-piperazin-1-yl)-2-methylprimidin-4-ylamino) thiazole-5- carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. Journal of Medicinal Chemistry. 2004; (47):6658-6661. 46. Schittenhelm MM. Dasatinib (BMS-354825), a Dual SRC/ABL Kinase Inhibitor, Inhibits the Kinase Activity of Wild-Type, Juxtamembrane, and Activation Loop Mutant KIT Isoforms Associated with Human Malignancies. Cancer Research. 2006; 66(1):473-481. 47. Golemovic M. AMN107, a Novel Aminopyrimidine Inhibitor of Bcr-Abl, Has In vitro Activity against Imatinib-Resistant ChronicMyeloid Leukemia. Clinical Cancer Research. 2005; 11(13):4941-47. 48. Weisberg E. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005; (7):129-141. 43 49. Mcfarland KL, Wetzstein GA. Chronic Myeloid Leukemia Therapy: Focus on Second-Generation Tyrosine Kinase Inhibitors. Cancer Control. 2009; 16(2):132-140. 50. O’hare T. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation- Based Resistance. Cancer Cell. 2009; 16(3):401–412. 51. Hochhaus A, La Rosée P. Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia. 2009; (18):1321-1331. 52. Hochhaus A. Six-year follow- up of patients receiving imatinib for the first- line treatment of chronic myeloid leukemia. Leukemia. 2009; 23(6):1054- 61. 53. Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncology. 2009; 8(11):1018-29. 54. Milojkovic D, Apperley J. Mechanisms of Resistance to Imatinib and second-generation Tyrosine Inhibitors in Chronic Myeloid Leukemia. Clinical Cancer Research. 2009; 15(24):7519-7527. 55. Soverini S. Choosing the best second-line tyrosine kinase inhibitor in imatinib-resistant chronic myeloid leukemia patients harboring Bcr-Abl kinase domain mutations: how reliable is the IC₅₀. The Oncologist. 2011; 16(6):868-76. 56. Ernst T. BCR-ABL Mutations in Chronic Myeloid Leukemia. Hematology/Oncology Clinics of North America Survey. 2011; (25):997- 1008. 57. O’hare T, Eide CA, Deininger MWN. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood. 2007; 110(7):2242-49. 44 58. Redaelli S. Activity of Bosutinib, Dasatinib, and Nilotinib Against 18 Imatinib-Resistant BCR/ABL Mutants. Journal Clinical Oncology. 2009; 27(3):469-71. 59. Brandford S, Melo JV, Hughes TP. Selecting optimal second line tyrosine kinase therapy for chronic myeloid leukemia patients afther imatinibe failure: does the BCR-ABL mutation status really matter. Blood. 2009; 114(27):5426-34. 60. Cross NCP. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia. 2012; (104):1-4. 61. Hochhaus A. Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinibe mesylate therapy in chronic phase chronic myeloid leukemia afther failure of interferon-α treatment. Blood. 2008; 111(3):1039-1043. 62. Hochhaus, A., Baccarani, M., Silver, R.T. et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020; 34, 966–984. 63. Kantarjian H, Cortes J. Considerations in the Management of Patients with Philadelphia Chromosome–Positive Chronic Myeloid Leukemia Receiving Tyrosine Kinase Inhibitor Therapy. Journal of Clinical Oncology. 2011; 29(12):1512-1516. 64. Al-Achkar W, Moassass F, Youssef N, Wafa A. Correlation of p210 BCR- ABL transcript variants with clinical, parameters and disease outcome in 45 chronic myeloid leukemia patients. J BUON. 2016;21(2):444-449. 65. Bennour A, Ouahchi I, Achour B, et al. Analysis of the clinico- hematological relevance of the breakpoint location within M-BCR in chronic myeloid leukemia. Med Oncol. 2013; 30(1):348. 66. Arun AK, Senthamizhselvi A, Mani S, et al. Frequency of rare BCR-ABL1 fusion transcripts in chronic myeloid leukemia patients. Int J Lab Hematol. 2017; 39(3):235-242. 45 67. Adler, R., Viehmann, S., Kuhlisch, E., Martiniak, Y., Röttgers, S., Harbott, J., & Suttorp, M. Correlation of BCR/ABL transcript variants with patients' characteristics in childhood chronic myeloid leukemia. European Journal of Haematology, 2009; 82(2), 112–118. 68. Lauseker M, Hanfstein B, Haferlach C, Schnittger S, Pfirrmann M, Fabarius A, et al. Equivalence of BCR-ABL transcript levels with complete cytogenetic remission in patients with chronic myeloid leukemia in chronic phase. J Cancer Res Clin Oncol. 2014; 140:1965–9. 69. Lauseker M, Hanfstein B, Haferlach C, Schnittger S, Pfirrmann M, Fabarius A, et al. Equivalence of BCR-ABL transcript levels with complete cytogenetic remission in patients with chronic myeloid leukemia in chronic phase. J Cancer Res Clin Oncol. 2014; 140:1965–9. 70. Kazaal MS, Hamdan FB, Al-Mayah QS. Association of BCR/ABL transcript variants with different blood parameters and demographic features in Iraqi chronic myeloid leukemia patients. Mol Genet Genom Med, 2019; 7(8): e809. 71. Hanfstein B, Lauseker M, Hehlmann R., Saussele S., Erben P, Dietz C, Muller MC. Distinct characteristics of e13a2 versus e14a2 BCR‐ABL1 driven chronic myeloid leukemia under first‐line therapy with imatinib. Haematologica, 2014; 99(9), 1441–1447. 72. Kagita S, Mamidi, TK, Digumarti L, Gundeti S, & Digumarti R. Assessment of BCR‐ABL1 fusion transcripts and their association with response to imatinib treatment in chronic myeloid leukemia patients.Indian Journal of Medical and Paediatric Oncology, 2018; 39(2), 165– 171. 73. Al‐Achkar W, Moassass F, Youssef N & Wafa A. Correlation of p210 BCR‐ ABL transcript variants with clinical, parameters and disease outcome in 45 chronic myeloid leukemia patients. Journal of Balkan Union of Oncology, 2016; 21(2), 444–449. 74. Vasconcelos AP, Azevedo IF, Melo FCBC, Neves WB, Azevedo ACAC & Melo RAM. BCR‐ABL1 transcript types showed distinct laboratory characteristics in patients with chronic myeloid leukemia. Genetic and Molecular Research, 2017; 16(2), 1–4. 46 75. Jain, P., Kantarjian, H., Patel, K. P., Gonzalez, G. N., Luthra, R., Shamanna, R. K., ... Cortes, J. Impact of BCR‐ABL transcript type on outcome in patients with chronic‐phase CML treated with tyrosine kinase inhibitors. Blood. 2016;127(10), 1269–1275. 76. Irshad, S., Butt, M. A., & Joyia, A. Frequency of different BCR‐ABL fusion transcripts in chronic myelogenous leukemia patients in Pakistan. International Journal for Agro Veterinary and Medical Sciences. 2002; 6(6), 418–423. 77. Owojuyigbe, T.O., Durosinmi, M.A., Bolarinwa, R.A.A. et al. Distribution of BCR–ABL1 Transcript Variants in Nigerians with Chronic Myeloid Leukemia. Indian J Hematol Blood Transfus. 2020. 78. Hassan A, Dogara LG, Babadoko AA, Awwalu S, Mamman AI. Coexistence of JAK2 and BCR-ABL mutation in patient with myeloproliferative neoplasm. Niger Med J. 2015;56(1):74-76. 79. Soderquist CR, Ewalt MD, Czuchlewski DR, et al. Myeloproliferative neoplasms with concurrent BCR-ABL1 translocation and JAK2 V617F mutation: a multi-institutional study from the bone marrow pathologygroup. Mod Pathol. 2018;31(5):690-704. 80. Soliman DS, Abdulla MA, Sabbagh AA, Akiki S, Ibrahim F, et al. BCR/ABL- 1-Positive Myeloproliferative Neoplasm Presenting with Isolated Remarkable Thrombocytosis with Atypical Clinicopathological Features: Discussion from Management Point of View. J Bloodm Lymph. 2019; 9: 243. 81. Zhou A, Knoche EM, Engle EK, Fisher DA, Oh ST. Concomitant JAK2 V617F-positive polycythemia vera and BCR-ABL-positive chronic myelogenous leukemia treated with ruxolitinib and dasatinib. Blood Cancer J. 2015;5(10): e351. 82. Campos, Mireille Guimarães Vaz de Chauffaille, Maria de Lourdes L. Ferrari, Rodrigues, Celso Arrais, Krum, Everson A., & Yamamoto, Mihoko. A rare case of Acute Lymphocytic Leukemia (ALL) presenting with double Philadelphia chromosome: relapse or secondary leukemia? Genetics and Molecular Biology, 2003; 26(3), 249-251. 83. Polampalli S, Choughule A, Negi N, Shinde S, Baisane C, Amre P, et al. Analysis and comparison of clinicohematological parameters and molecular and cytogenetic response of two Bcr/Abl fusion transcripts. Genet Mol Res 2008; 7:1138-49 84. Osman EA, Hamad K, Elmula IM, Ibrahim ME. Frequencies of BCR- ABL1 fusion transcripts among Sudanese chronic myeloid leukaemia patients. Genet Mol Biol 2010; 33:229-31. 85. Adler R, Viehmann S, Kuhlisch E, Martiniak Y, Röttgers S, Harbott J, et al. Correlation of BCR/ABL transcript variants with patients' characteristics in childhood chronic myeloid leukaemia. Eur J Haematol 2009; 82:112-8. 86. Devireddy, L. R. et al. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell, 2005; v. 123, n. 7,p. 1293-1305. 87. HaiI, A. et al. Differences in structural elements of Bcr-Abl oncoprotein isoforms in Chronic Myelogenous Leukemia. Bioinformation, 2014; v. 10, n. 3, p. 108. 88. Lucas, C. M. et al. Chronic myeloid leukemia patients with the e13a2 BCR- ABL fusion transcript have inferior responses to imatinib compared to patients with the e14a2 transcript. Haematologica, 2009; v. 94, n. 10, p. 1362-1367. 89. JAIN, P.et al. Impact of BCR-ABL transcript type on outcome in patients with chronic-phaseCML treated with tyrosine kinase inhibitors. Blood, 2018; v. 127, n. 10, p. 1269-1275. 90. Azad NA, Shah ZA, Pandith AA, et al. Prognostic Implication of BCR-ABL Fusion Transcript Variants in Chronic Myeloid Leukemia (CML) Treated with Imatinib. A First of Its Kind Study on CML Patients of Kashmir Asian Pacific Journal of Cancer Prevention: APJCP. 2018; (6):1479-1485. 91. Frederiksen, H et al. “Vascular Diseases In Patients With Chronic Myeloproliferative Neoplasms - Impact Of Comorbidity.” Clinical epidemiology vol. 2019; 11 955-967. 92. Justyna Bartoszko, Tony Panzarella, Caroline Jane McNamara, Anthea Lau, Aaron D. Schimmer, Andre C. Schuh, Hassan Sibai, Karen W.L. Yee, Mark D. Minden, Rebecca Devlin, Vikas Gupta; Distribution and Impact of Comorbidities on Survival and Leukemic Transformation in Myeloproliferative Neoplasm (MPN)-Associated Myelofibrosis (MF). Blood 2016; 128 (22): 4264. 48 93. Mahmoud SF, McCobb DP. Regulation of Slo potassium channel alternative splicing in the pituitary by gonadal testosterone. J Neuroendocrinol 2004; 16:237–43. 94. Thakur MK, Mani ST. Estradiol regulates APP mRNA alternative splicing in the mice brain cortex. Neurosci Lett 2005; 381:154–7. 95. Zhu N, Eghbali M, Helguera G, Song M, Stefani E, Toro L. Alternative splicing of Slo channel gene programmed by estrogen, progesterone and pregnancy. FEBS Lett 2005; 579:4856–60. 96. Hull J, Campino S, Rowlands K, et al. Identification of common genetic variation that modulates alternative splicing. PloS Genet 2007; 3:1009– 18. 97. Baccarani, M., Castagnetti, F., Gugliotta, G., Rosti, G., Soverini, S. Pfirrmann, M. The proportion of different types of BCR-ABL1 transcription in chronic myeloid leukemia. An international vision. Leukemia, 2019. 98. Kfoury YF, Mercier DT. Scadden, SnapShot: The hematopoietic stem cell niche. Cell, 2014; 158(1): p. 228-228 e1. 99. Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood, 2015; 125(17), 2605–2613. 100. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011;12(10):643-55. 101. Wang X, Tripodi J, Kremyanskaya M, Blouin A, Roda P, Hoffman R, Najfeld V. BCR-ABL1 is a secondary event after JAK2V617F in patients with polycythemia vera who develop chronic myeloidleukemia. Blood. 2013; 121(7):1238–1239. 102. Zhou A, Knoche EM, Engle EK, Fisher DAC, Oh ST. Concomitant JAK2 V617F-positive polycythemia vera and BCR-ABL-positive 49 chronic myelogenous leukemia treated with ruxolitinib and dasatinib. Blood Cancer. 2015; J 5: e351. 103. Loghavi S, Pemmaraju N, Kanagal-Shamanna R, Mehrotra M, Medeiros LJ, Luthra R, Lin P, Huh Y, Kantarjian HM, Cortes JE, Verstovsek S, Patel KP. Insights from response to tyrosine kinase inhibitor therapy in a rare myeloproliferative neoplasm with CALR mutation and BCR-ABL1. Blood. 2015; 125(21):3360–3363. 104. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2017;92(1):94–108. 105. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, Godfrey AL. et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379(15):1416– 1430. 106. Pahore ZA, Shamsi TS, Taj M, Farzana T, Ansari SH, Nadeem M, Ahmad M. et al. A mutação JAK2V617F na leucemia mieloide crônica prediz a progressão inicial da doença. J Coll Physicians Surg Pak. 2011; 21 (8): 472–475. 107. Hsu HC, Tan LY, Au LC, Lee YM, Lieu CH, Tsai WH, You JY, Liu MD, Ho CK. Detection of bcr-abl gene expression at a low level in blood cells of some patients with essential thrombocythemia. J Lab Clin Med. 2004; 143(2):125–129. 108. Damaj G, Delabesse E, le Bihan C, Asnafi V, Rachid M, Lefrere F, Radford-Weiss I, Macintyre E, Hermine O, Varet B. Typical essential thrombocythaemia does not express bcr-abelson fusion transcript. Br J Haematol. 2002; 116(4):812–816. 109. Yamada H, Murakami T, Kaneda T, Tadachi M, Utsumi M, Minami S, Hamaguchi M, Kasai M, Kodera Y, Ohashi H, Morishita Y, Terasawa T, Yamasaki Y, Kamiya Y, Hattori M, Yamanaka K, Tsushita K, Shimoyama M. Clinical significance of major and minor bcr/abl chimeric transcripts in essential thrombocythemia. Jpn J Clin Oncol. 2000; 30(11):472–477. 50 110. Boddu P, Chihara D, Masarova L, Pemmaraju N, Patel KP, Verstovsek S. A co-ocorrência de mutações condutoras em neoplasias mieloproliferativas crônicas. Ann Hematol. 2018; 97 (11): 2071–2080. 111. Hsu HC, Tan LY, Au LC, Lee YM, Lieu CH, Tsai WH, You JY, Liu MD, Ho CK. Detection of bcr-abl gene expression at a low level in blood cells of some patients with essential thrombocythemia. J Lab Clin Med. 2004; 143(2):125–129. 112. Cambier N, Renneville A, Cazaentre T, Soenen V, Cossement C, Giraudier S, Grardel N, Laï JL, Rose C, Preudhomme C. JAK2V617F- positive polycythemia vera and Philadelphia chromosome-positive chronic myeloid leukemia: one patient with two distinct myeloproliferative disorders. Leukemia; 2008; 22(7):1454–1455. 113. DiNardo CD, Ravandi F, Agresta S, Konopleva M, Takahashi K, Kadia T, Routbort M, Patel KP, Mark Brandt, Pierce S, Garcia-Manero G, Cortes J, Kantarjian H. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol.2015; 90(8):732–736. 114. Sidon P, el Housni H, Dessars B, Heimann P. The JAK2V617F mutation is detectable at very low level in peripheral blood of healthy donors. Leukemia. 2006; 20(9):1622pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Perfil clínico e laboratorial de pacientes positivos para BCR-ABL1 no estado do Amazonas.pdf1,59 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.