DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/4084
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCardoso, Evilázio Cunha-
dc.date.available2022-08-10T16:15:56Z-
dc.date.issued2019-08-16-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/4084-
dc.description.abstractSickle cell disease (SCD) is associated with increased levels of extracellular heme, which has been considered a key mediator of inflammation in this condition. Despite abundant evidence supporting this concept in cell and animal models, very few studies addressed the association of heme levels with SCD severity. Methods: This was a cross-sectional study in patients with acute vaso- occlusive crisis (VOC) evaluating the association between total heme levels and clinical characteristics of VOC. Heme levels were measured in serum at admission and after convalescence (discharge or first return visit to outpatient clinic), and correlated with other clinical and laboratory markers of SCD severity. Results: Twenty-eight admission were included, in 25 patients. Heme levels were similar between admission and convalescence. We did not observe any association between total heme levels with clinical markers such as VOC duration, development of acute chest syndrome or baseline SCD severity score. Mild to moderate correlations were observed between heme levels at admission with hemolysis markers, but not with markers or coagulation (D-dimer) or inflammation (platelet, neutrophil, monocyte counts). Conclusion: In the course of VOC, the pattern of variation in total heme levels in serum is heterogenous, and does not associate with clinical and laboratory markers of SCD severity or inflammatory activity. These results highlight the importance of refining the methods to measure free heme in biological matrices so that the association of heme with inflammation and coagulation in SCD can be confirmed in human studiespt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectDoença falciformept_BR
dc.subjecthemept_BR
dc.subjecttromboembolismopt_BR
dc.subjectvaso- oclusãopt_BR
dc.titleAvaliação da Associação entre os níveis de HEME e HMGB1 com os Marcadores de Ativação da Coagulação em Crises Agudas na Doença Falciformept_BR
dc.title.alternativeAssessment of the Association between the levels of HEME and HMGB1 with Activation Markers of clotting in acute attacks of the disease sickle cellpt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2022-08-10T16:15:56Z-
dc.contributor.advisor-co1Paula, Erich Vinicius de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/0983518713985469pt_BR
dc.contributor.advisor1Fraiji, Nelson Abrahim-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5204063085335824pt_BR
dc.contributor.referee1Passos, Leny Nascimento da Motta-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8194622149198642pt_BR
dc.contributor.referee2Tarragô, Andréa Monteiro-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4644326589690231pt_BR
dc.contributor.referee3Barros, Francisco Erivaldo Vidal-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3722691640950389pt_BR
dc.description.resumoA doença falciforme (DF) está associada a níveis aumentados de heme extracelular, que tem sido considerado um mediador chave da inflamação nessa condição. Apesar da abundante evidência que sustenta esse conceito em modelos celulares e animais, poucos estudos abordaram a associação dos níveis de heme com a gravidade da doença. Métodos: Estudo transversal em pacientes com crise vaso-oclusiva aguda (COV) avaliou a associação entre os níveis de heme total e as características clínicas de COV. Os níveis de heme foram medidos no soro na admissão e, após a convalescença (alta ou primeiro retorno ao ambulatório), foram correlacionados com outros marcadores clínicos e laboratoriais da gravidade da DF. Resultados: 28 internações foram incluídas, em 25 pacientes, destes 03 internaram 02(duas) vezes. Os níveis de heme foram semelhantes entre a admissão e a convalescença. Não observamos qualquer associação entre os níveis de heme total com marcadores clínicos, como a duração do COV, o desenvolvimento de síndrome torácica aguda ou o escore de gravidade basal de SDC. Correlações leves a moderadas foram observadas entre os níveis de heme na admissão com marcadores de hemólise, mas não com marcadores ou coagulação (D-dímero) ou inflamação (contagem de plaquetas, neutrófilos, monócitos). Conclusão: No curso do VOC, o padrão de variação nos níveis totais de heme no soro é heterogêneo e não se associa com marcadores clínicos e laboratoriais de gravidade ou atividade inflamatória. Esses resultados destacam a importância de refinar os métodos para medir heme livre em matrizes biológicas, de modo que a associação de heme com inflamação e coagulação em SCD possa ser confirmada em estudos em humanospt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.referencesAdisa, O. A., Hu, Y., Ghosh, S., Aryee, D., Osunkwo, I., and Ofori-Acquah, S. F. (2013). Association between plasma free haem and incidence of vaso-occlusive episodes and acute chest syndrome in children with sickle cell disease. Br. J. Haematol. 162, 702–5. doi:10.1111/bjh.12445. Ataga, K. I., Brittain, J. E., Desai, P., May, R., Jones, S., Delaney, J., et al. (2012). Association of coagulation activation with clinical complications in sickle cell disease. PLoS One 7, e29786. doi:10.1371/journal.pone.0029786. Belcher, J., Chen, C., Nguyen, J., Milbauer, L., Abdulla, F., Alayash, A., et al. (2014a). Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123, 377–90. Belcher, J. D., Beckman, J. D., Balla, G., Balla, J., and Vercellotti, G. (2010). Heme degradation and vascular injury. Antioxid. Redox Signal. 12, 233–48. doi:10.1089/ars.2009.2822. Belcher, J. D., Chen, C., Nguyen, J., Milbauer, L., Abdulla, F., Alayash, A. I., et al. (2014b). Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123, 377–90. 53 doi:10.1182/blood-2013-04-495887. Carvalho, M. O. S., Araujo-Santos, T., Reis, J. H. O., Rocha, L. C., Cerqueira, B. A. V, Luz, N. F., et al. (2018). Inflammatory mediators in sickle cell anaemia highlight the difference between steady state and crisis in paediatric patients. Br. J. Haematol. 182, 933–936. doi:10.1111/bjh.14896. Cesar, P., Dhyani, A., Augusto Schwade, L., Acordi, P., Xerez Albuquerque, C., Nina, R., et al. (2019). Epidemiological, clinical, and severity characterization of sickle cell disease in a population from the Brazilian Amazon. Hematol. Oncol. Stem Cell Ther. doi:10.1016/j.hemonc.2019.04.002. Chen, G., Zhang, D., Fuchs, T. A., Manwani, D., Wagner, D. D., and Frenette, P. S. (2014). Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123, 3818–27. doi:10.1182/blood- 2013-10-529982. Colella, M. P., De Paula, E. V, Conran, N., Machado-Neto, J. A., Annicchino- Bizzacchi, J. M., Costa, F. F., et al. (2012). Hydroxyurea is associated with reductions in hypercoagulability markers in sickle cell anemia. J. Thromb. Haemost. 10, 1967–70. doi:10.1111/j.1538-7836.2012.04861.x. de Souza, G. R., Hounkpe, B. W., Fiusa, M. M. L., Colella, M. P., Annichino- Bizzacchi, J. M., Traina, F., et al. (2017). Tissue factor-dependent coagulation activation by heme: A thromboelastometry study. PLoS One 12, e0176505. doi:10.1371/journal.pone.0176505. Desbuards, N., Rochefort, G. Y., Schlecht, D., Machet, M.-C. C., Halimi, J.-M. M., Eder, V., et al. (2007). Heme oxygenase-1 inducer hemin prevents vascular thrombosis. Thromb. Haemost. 98, 614–620. doi:10.1160/TH06-12-0717. Dutra, F. F., Alves, L. S., Rodrigues, D., Fernandez, P. L., de Oliveira, R. B., Golenbock, D. T., et al. (2014). Hemolysis-induced lethality involves inflammasome activation by heme. Proc. Natl. Acad. Sci. U. S. A. 111, E4110-8. doi:10.1073/pnas.1405023111. Dutra, F. F., and Bozza, M. T. (2014). Heme on innate immunity and inflammation. Front. Pharmacol. 5, 115. doi:10.3389/fphar.2014.00115. Figueiredo, R. T., Fernandez, P. L., Mourao-Sa, D. S., Porto, B. N., Dutra, F. F., Alves, L. S., et al. (2007). Characterization of heme as activator of Toll-like receptor 4. J. Biol. Chem. 282, 20221–9. doi:10.1074/jbc.M610737200. Folsom, A. R., Tang, W., Roetker, N. S., Kshirsagar, A. V, Derebail, V. K., Lutsey, P. 54 L., et al. (2015). Prospective study of sickle cell trait and venous thromboembolism incidence. J. Thromb. Haemost. 13, 2–9. doi:10.1111/jth.12787. Frimat, M., Tabarin, F., Dimitrov, J. D., Poitou, C., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V., et al. (2013). Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood 122, 282–92. doi:10.1182/blood-2013-03-489245. Ghosh, S., Adisa, O. A., Chappa, P., Tan, F., Jackson, K. A., Archer, D. R., et al. (2013). Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J. Clin. Invest. 123, 4809–20. doi:10.1172/JCI64578. Green, D., Reynolds, N., Klein, J., Kohl, H., and Ts’ao, C. H. (1983). The inactivation of hemostatic factors by hematin. J. Lab. Clin. Med. 102, 361–9. Green, D., and Ts’ao, C. H. (1990). Hematin: effects on hemostasis. J. Lab. Clin. Med. 115, 144–7. Hounkpe, B. W., Fiusa, M. M. L., Colella, M. P., da Costa, L. N. G., Benatti, R. de O., Saad, S. T. O., et al. (2015). Role of innate immunity-triggered pathways in the pathogenesis of Sickle Cell Disease: a meta-analysis of gene expression studies. Sci. Rep. 5, 17822. doi:10.1038/srep17822. Jara-Palomares, L., Solier-Lopez, A., Elias-Hernandez, T., Asensio-Cruz, M. I., Blasco-Esquivias, I., Sanchez-Lopez, V., et al. (2018). D-dimer and high- sensitivity C-reactive protein levels to predict venous thromboembolism recurrence after discontinuation of anticoagulation for cancer-associated thrombosis. Br. J. Cancer 119, 915–921. doi:10.1038/s41416-018-0269-5. Kato, G. J., Piel, F. B., Reid, C. D., Gaston, M. H., Ohene-Frempong, K., Krishnamurti, L., et al. (2018). Sickle cell disease. Nat. Rev. Dis. Prim. 4, 18010. doi:10.1038/nrdp.2018.10. Kato, G. J., Steinberg, M. H., and Gladwin, M. T. (2017). Intravascular hemolysis and the pathophysiology of sickle cell disease. J. Clin. Invest. 127, 750–760. doi:10.1172/JCI89741. Lu, X., Chen-Roetling, J., and Regan, R. F. (2014). Systemic hemin therapy attenuates blood-brain barrier disruption after intracerebral hemorrhage. Neurobiol. Dis. 70, 245–51. doi:10.1016/j.nbd.2014.06.005. Mendonça, R., Silveira, A. A. A., and Conran, N. (2016). Red cell DAMPs and inflammation. Inflamm. Res. 65, 665–78. doi:10.1007/s00011-016-0955-9. 55 Merle, N. S., Grunenwald, A., Rajaratnam, H., Gnemmi, V., Frimat, M., Figueres, M.- L., et al. (2018). Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI Insight 3. doi:10.1172/jci.insight.96910. Merle, N. S., Paule, R., Leon, J., Daugan, M., Robe-Rybkine, T., Poillerat, V., et al. (2019). P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner. Proc. Natl. Acad. Sci. U. S. A., 201814797. doi:10.1073/pnas.1814797116. Miles, R. R., Roberts, R. F., Putnam, A. R., and Roberts, W. L. (2004). Comparison of serum and heparinized plasma samples for measurement of chemistry analytes. Clin. Chem. 50, 1704–6. doi:10.1373/clinchem.2004.036533. Muller-Eberhard, U., Javid, J., Liem, H. H., Hanstein, A., and Hanna, M. (1968). Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 32, 811–5. Naik, R. P., Streiff, M. B., Haywood, C., Segal, J. B., and Lanzkron, S. (2014). Venous thromboembolism incidence in the Cooperative Study of Sickle Cell Disease. J. Thromb. Haemost. 12, 2010–6. doi:10.1111/jth.12744. Noubouossie, D., Key, N. S., and Ataga, K. I. (2016). Coagulation abnormalities of sickle cell disease: Relationship with clinical outcomes and the effect of disease modifying therapies. Blood Rev. 30, 245–56. doi:10.1016/j.blre.2015.12.003. Oh, J.-Y., Hamm, J., Xu, X., Genschmer, K., Zhong, M., Lebensburger, J., et al. (2016). Absorbance and redox based approaches for measuring free heme and free hemoglobin in biological matrices. Redox Biol. 9, 167–177. doi:10.1016/j.redox.2016.08.003. Rees, D. C., Williams, T. N., and Gladwin, M. T. (2010). Sickle-cell disease. Lancet 376, 2018–31. doi:10.1016/S0140-6736(10)61029-X. Reiter, C. D., Wang, X., Tanus-Santos, J. E., Hogg, N., Cannon, R. O., Schechter, A. N., et al. (2002). Cell-free hemoglobin limits nitric oxide bioavailability in sickle- cell disease. Nat. Med. 8, 1383–9. doi:10.1038/nm799. Roumenina, L. T., Rayes, J., Lacroix-Desmazes, S., and Dimitrov, J. D. (2016). Heme: Modulator of Plasma Systems in Hemolytic Diseases. Trends Mol. Med. 22, 200–13. doi:10.1016/j.molmed.2016.01.004. Schaer, D. J., Vinchi, F., Ingoglia, G., Tolosano, E., and Buehler, P. W. (2014). Haptoglobin, hemopexin, and related defense pathways-basic science, clinical 56 perspectives, and drug development. Front. Physiol. 5, 415. doi:10.3389/fphys.2014.00415. Sebastiani, P., Nolan, V. G., Baldwin, C. T., Abad-Grau, M. M., Wang, L., Adewoye, A. H., et al. (2007). A network model to predict the risk of death in sickle cell disease. Blood 110, 2727–35. doi:10.1182/blood-2007-04-084921. Setty, B. N. Y., BETAL, S. G., Zhang, J., and Stuart, M. J. (2008). Heme induces endothelial tissue factor expression: potential role in hemostatic activation in patients with hemolytic anemia. J. Thromb. Haemost. 6, 2202–9. doi:10.1111/j.1538-7836.2008.03177.x. Soares, M. P., and Bozza, M. T. (2016). Red alert: labile heme is an alarmin. Curr. Opin. Immunol. 38, 94–100. doi:10.1016/j.coi.2015.11.006. Sparkenbaugh, E. M., Chantrathammachart, P., Wang, S., Jonas, W., Kirchhofer, D., Gailani, D. D., et al. (2015). Excess of heme induces tissue factor-dependent activation of coagulation in mice. Haematologica 100, 308–14. doi:10.3324/haematol.2014.114728. Tosetto, A., Testa, S., Martinelli, I., Poli, D., Cosmi, B., Lodigiani, C., et al. (2017). External validation of the DASH prediction rule: a retrospective cohort study. J. Thromb. Haemost. 15, 1963–1970. doi:10.1111/jth.13781. Tripodi, A. (2016). Thrombin Generation Assay and Its Application in the Clinical Laboratory. Clin. Chem. 62, 699–707. doi:10.1373/clinchem.2015.248625. Vallelian, F., Schaer, C. A., Deuel, J. W., Ingoglia, G., Humar, R., Buehler, P. W., et al. (2018). Revisiting the putative role of heme as a trigger of inflammation. Pharmacol. Res. Perspect. 6, e00392. doi:10.1002/prp2.392. Vendrame, F., Olops, L., Saad, S. T. O., Costa, F. F., and Fertrin, K. Y. (2018). Differences in heme and hemopexin content in lipoproteins from patients with sickle cell disease. J. Clin. Lipidol. 12, 1532–1538. doi:10.1016/j.jacl.2018.08.002. Vercellotti, G. M., Zhang, P., Nguyen, J., Abdulla, F., Chen, C., Nguyen, P., et al. (2016). Hepatic Overexpression of Hemopexin Inhibits Inflammation and Vascular Stasis in Murine Models of Sickle Cell Disease. Mol. Med. 22, 1. doi:10.2119/molmed.2016.00063. Vichinsky, E. P., Neumayr, L. D., Earles, A. N., Williams, R., Lennette, E. T., Dean, D., et al. (2000). Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group. N. Engl. J. Med. 57 342, 1855–65. doi:10.1056/NEJM200006223422502. Volin, L., Rasi, V., Vahtera, E., and Tenhunen, R. (1988). Heme arginate: effects on hemostasis. Blood 71, 625–8. Wagener, F. A. D. T. G., Eggert, A., Boerman, O. C., Oyen, W. J. G., Verhofstad, A., Abraham, N. G., et al. (2001). Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98, 1802–1811. doi:10.1182/blood.V98.6.1802pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.