DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/3604
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Beatriz Enóla Ribeiro da-
dc.date.available2021-12-28-
dc.date.available2022-01-04T20:39:42Z-
dc.date.issued2019-11-13-
dc.identifier.citationSILVA, Beatriz Enóla Ribeiro da. Efeito das mudanças climáticas sobre o metabolismo energético, antioxidante e neurológico do tambaqui (cuvier, 1818). 2019. 56 f. TCC (Graduação em Ciências Biológicas) - Universidade do Estado do Amazonas, Manaus.pt_BR
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/3604-
dc.description.abstractClimate change has become one of the most discussed issues worldwide. According to the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2014), an increase of up to 6 ° C in the atmosphere is predicted for the year 2100. These changes directly affect the Amazonian aquatic environment and its organisms. These include changes in pH, temperature and oxygen, as well as causing damage to organisms by imposing behavioral, biochemical and morphological adjustments. Among these organisms is tambaqui (Colossoma macropomum), a species of high commercial value for the region and that has several adaptations to face periods of variations in temperature and seasonality of oxygen. Thus, the objective of this work was to evaluate how the effect of climatic scenarios and exposure to hypoxia affect the energy, antioxidant and neurological metabolism of individuals of the species. For this, the animals were acclimated for 30 days in scenarios RCP2.6 and RCP8.5 (4.5 ° C and 900 ppm CO2) (N = 42) and subsequently subjected to hypoxia for 6 hours (n = 7), After that, blood samples were collected for hematological analysis and tissues such as liver, brain, muscle and heart for enzymatic analysis and damage. The oxygen consumption variables show us that the species tries to maintain its consumption performance when kept in the extreme scenario in normoxia and hypoxia. For blood parameters, hemoglobin concentration ([Hb]), mean corpuscular hemoglobin (HCM) and mean corpuscular hemoglobin (CHCM) concentration were high (p <0.001), indicating that animals increase circulating hemoglobin to try to better supply tissue oxygen demand. Being observed the elevation of glucose concentrations when hypoxic for both scenarios (p <0.001) that is used by alternative pathways. The catalase (CAT) and glutathione-S-transferase (GST) enzymatic analyzes show us that the species does not present significant responses to the extreme scenario or lipoperoxidation damage. The same is expressed for LDH kinetics for the extreme scenario, and AChE remained almost unchanged for both scenarios, with a difference only in the current hypoxia (p <0.014). Thus, extreme scenarios and hypoxic conditions may condition metabolic stress in the animal interfering with the necessary adjustments. Keywords: Thermal adaptation; tambaqui; hypoxia; oxidative stresspt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAdaptação térmicapt_BR
dc.subjectTambaquipt_BR
dc.subjectHipóxiapt_BR
dc.subjectEstresse oxidativopt_BR
dc.subjectThermal adaptationpt_BR
dc.subjectHypoxiapt_BR
dc.subjectOxidative stresspt_BR
dc.titleEfeito das mudanças climáticas sobre o metabolismo energético, antioxidante e neurológico do tambaqui (cuvier, 1818)pt_BR
dc.title.alternativeEffect of climate change on the energetic, antioxidant and neurological metabolism of tambaqui (cuvier, 1818)pt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.date.accessioned2022-01-04T20:39:42Z-
dc.contributor.advisor-co1Almeida e Val, Vera Maria Fonseca de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3821690425847852pt_BR
dc.contributor.advisor1Ferreira, Rosilene Gomes da Silva-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3376667127204752pt_BR
dc.contributor.referee1Campos, Derek Felipe-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9932545658032162pt_BR
dc.contributor.referee2Mota, Susana Braz-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1619385871631270pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5721133938805957pt_BR
dc.description.resumoAs mudanças climáticas se tornaram um dos assuntos mais discutidos mundialmente. De acordo com o Painel Intergovernamental sobre Mudanças Climáticas (IPCC) (IPCC, 2014), está previsto um aumento de até 6 °C na atmosfera para o ano de 2100. Tais mudanças afetam diretamente o ambiente aquático amazônico e seus organismos, e se pode destacar dentre elas as alterações no pH, temperatura e oxigênio, além de acarretarem em danos aos organismos impondo ajustes comportamentais, bioquímicos e morfológicos. Entre esses organismos, está o tambaqui (Colossoma macropomum), uma espécie de alto valor comercial para a região e que possui diversas adaptações para enfrentar períodos de variações na temperatura e sazonalidade de oxigênio. Desta forma, o objetivo deste trabalho foi avaliar como o efeito dos cenários climáticos e exposição à hipóxia interferem no metabolismo energético, antioxidante e neurológico de indivíduos da espécie. Para isso, os animais foram aclimatados por 30 dias nos cenários RCP2.6 e RCP8.5 (4,5 °C e 900 ppm de CO2) (N=42) e submetidos subsequentemente à hipóxia por 6 horas (n=7); após isso, foram realizadas coletas de sangue para análises hematológicas, e tecidos como fígado, cérebro, músculo e coração para análises enzimáticas e danos. As variáveis do consumo de oxigênio nos mostram que a espécie tenta manter o desempenho de consumo quando mantidos no cenário extremo em normóxia e hipóxia. Para os parâmetros sanguíneos, a concentração de hemoglobina ([Hb]), hemoglobina corpuscular média (HCM) e concentração de hemoglobina corpuscular média (CHCM) foram elevadas (p<0,001), indicando que os animais aumentam a hemoglobina circulante para tentar suprir melhor a demanda de oxigênio tecidual. Foi observada a elevação das concentrações de glicose quando em hipóxia para os dois cenários (p<0,001), que é utilizada pelas vias alternativas. As análises enzimáticas catalase (CAT) e glutationa-S-transferase (GST) nos mostram que a espécie não apresenta respostas significativas para o cenário extremo nem para os danos em lipoperoxidação. Este é expresso para a cinética da LDH para o cenário extremo, e a AChE manteve-se quase inalterada para os dois cenários, havendo diferença somente no atual hipóxia (p< 0,014). Assim, os cenários extremos e condições de hipóxia podem condicionar estresse metabólico no animal interferindo nos ajustes necessários. Palavras-chaves: Adaptação térmica; tambaqui; hipóxia; estresse oxidativopt_BR
dc.publisher.countryBrasilpt_BR
dc.relation.referencesADAMS, H. R. Drogas que atuam sobre os sistemas nervosos somático e autonômico. In: BOOTH, N, H.; McDONALD, L. E. Farmacologia e Terapêutica em Veterinária. Rio de Janeiro: Guanabara Koogan, p. 57-109, 1992. ALMEIDA, J. R.; GRAVATO, C.; GUILHERMINO, L. Effects of Temperature in Juvenile Seabass (Dicentrarchus labrax L.) Biomarker Responses and Behaviour: Implications for Environmental Monitoring. Estuaries and Coasts, v. 38, n. 1, p. 45- 55, 2014. ALMEIDA-VAL, V. M.; VAL, A. L. Evolutionary trends of LDH isozymes in fishes. Comparative Biochemistry and Physiology -- Part B: Biochemistry, v. 105, n. 1, p. 21-28, 1993. ALMEIDA-VAL, V. M. F.; SCHWANTEST, M. L. B.; VAL, A. L. LDH isozymes in amazon fish- II. Temperature and pH effects on LDH Kinetic properties from Mylossoma duriventris and Colossoma macropomum (Serrasalmidae). Comparative Biochemistry and Physiology, v. 98B, n. 1, p. 79-86, 1991. ALMEIDA-VAL, V. M. F.; CHIPPARI-GOMES, A.; LOPES, N. P. Metabolic and physiological adjustments to low oxygen and high temperature in fishes of the amazon. The Physiology of Tropical Fishes, v. 21, p. 443-455, 2006. ALMEIDA-VAL, V. M. F.; FARIAS, I. P. Respiration in fish ofthe Amazon: Metabolic adjustments to chronic hypoxia. In: VAL, AL; ALMEIDA-VAL, VMF; RANDALL, DJ (eds). Physiology and Biochemistry of the fishes of the Amazon. INPA, Manaus, p. 257-271, 1996. ALMEIDA-VAL, V. M. F.; VAL, A. L.; HOCHACHKA, P. W. Hypoxia tolerance in amazon fishes: status of an under-explored biological “goldmine”. In: HOCHACHKA, P. W.; LUTZ, P. L.; SICK, T.; ROSENTHAL, M.; THILLART, G. V. den. (Eds). Surviving hypoxia: mechanisms of control and adaptation. Boca Raton, CRC Press, p. 435-445, 1993. ALMEIDA-VAL, V. M. F.; FARIAS, I. P.; PAULA-SILVA, M. N.; DUNCAN, W. P.; VAL, A. L. Biochemical adjustments to hypoxia by Amazon cichlid. Brazilian Journal of Medical and Biological Research, v. 28, p. 1257-1263, 1995. ALTIERI, A. H.; GEDAN, K. B. Climate change and dead zones. Global Change Biology, v. 21, n. 4, p. 1395–1406, 2015. ARAÚJO-LIMA, C.; GOULDING, M. Os frutos do tambaqui: ecologia, conservação e cultivo na Amazônia. ed. Brasília: Sociedade Civil Mamirauá /CNPq, p. 186, 1998. ARBOGAST, S.; REID, M. Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide. Physiol Regul Integr Comp Physiol, p. 287: 698-705, 2004. 47 ARGOS, P.; ROSSMANN, M. G.; GRAU, U. M.; ZUBER, H.; FRANK, G.; TRATSCHIN, J. D. Thermal stability and protein structure. Biochemistry, V. 18, p. 5698-5703, 1979. ASSIS, C. R. D.; LINHARES, A. G.; OLIVEIRA, V. M.; FRANÇA, R. C. P.; CARVALHO, E. V. M. M.; BEZERRA, R. S.; CARVALHO-JUNIOR, L. B. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Science of the Total Environment, v. 441, p. 141–150, 2012. BAKER, D. W.; HUDSON, M.E.; FROST, E.J.; SEWELL, M.A.. Repeated measurement of M o 2 in small aquatic organisms: a manual intermittent flow respirometer using off-the-shelf components. Journal of Applied Physiology, v. 124, n. 3, p. 741-749, 2017. BEUTLER, E. Red Cell Metabolism: A manual of biochemical methods. 2. ed. New York: Grune e Straton, p. 160, 1975. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72. n.2, p. 248-254, 1976. BROWN, B. A. Hematology principles and procedures. 2. ed. Philadelphia: Lea e Febiger, p. 358, 1976. BOYD, C. E.; TUCKER C. S. Water quality and pond soil analyses for aquaculture. International Center for Aquaculture and Aquatic Environment. Auburn University, p.183, 1992. BOYD, C.E. Water quality in pounds for aquaculture. Hatay: Shrimp Mart, p. 482, 1996 CADIZ, L.; ZAMBONINO-INFANTE, J. L.; QUAZUGUEL, P.; MADEC, L. Metabolic response to hypoxia in European sea bass (Dicentrarchus labrax) displays developmental plasticity. Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology, v. 215, p. 1–9, 2018. CAMPOS, D. F.; JESUS, T. F.; KOCHHANN, D.; HEINRICHS-CALDAS, W.; COELHO, M. M.; ALMEIDA-VAL, V. M. F. Metabolic rate and thermal tolerance in two congeneric Amazon fishes: Paracheirodon axelrodi Schultz, 1956 and Paracheirodon simulans Géry, 1963 (Characidae). Hydrobiologia, v. 789, n. 1, p. 133-142, 2017. CAMPOS, D. F.; BRAZ-MOTA, S.; ALMEIDA-VAL, V. M. F. VAL, A. L. Predicting thermal sensitivity of three Amazon fishes exposed to climate change scenarios. Ecological Indicators, v. 101, n. September 2018, p. 533-540, 2019. CÂNDIDO, L. A.; MANZI, A. O.; TOTA, J.; TEIXEIRA-SILVA, P. R.; MORENO SILVA, F. S.; SANTOS, R. M. N.; CORREIA, F. W. S. O clima atual e futuro da Amazônia nos cenários do IPCC: a questão da savanização. Ciência e Cultura, v. 48 59, n. 3, São Paulo, p. 1-4, 2007. CAO, L.; CALDEIRA, K. Atmospheric CO2 stabilization and ocean acidification. Geophysical Research Letters, v. 35, n. 19, p. 1–5, 2008. CEYLAN, H.; ERDOĞAN, O. Cloning, expression, and characterization of human brain acetylcholinesterase in Escherichia coli using a SUMO fusion tag. Turkish Journal of Biology, v. 41, n. 1, p. 77–87, 2017. CHIPPARI-GOMES, A. R. et al. Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, v. 141, n. 3, p. 347–355, 2005. CLOW, K. A.; SHORT, C. E.; DRIEDZIC, W. R. Low levels of extracellular glucose limit cardiac anaerobic metabolism in some species of fish. The Journal of Experimental Biology, v. 220, n. 16, p. 2970–2979, 2017. COLLINS, G. M.; CLARK, T. D.; CARTON, A. G. Physiological plasticity v. inter population variability: Understanding drivers of hypoxia tolerance in a tropical estuarine fish. Marine and Freshwater Research, v. 67, n. 10, p. 1575–1582, 2016. COOPER, R. U.; CLOUGH, L. M.; FARWELL, M. A.; WEST, T. L. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. Journal of Experimental Marine Biology and Ecology, v. 279, n. 1–2, p. 1–20, 2002. DRAGAN, F.G. Respostas fisiológicas e metabólicas do tambaqui (Colossoma macropomum, Cuvier 1818) às alterações climáticas previstas pelos diferentes cenários do IPCC para o ano de 2100. Dissertação de mestrado, Instituto Nacional de Pesquisas da Amazônia/ Bioloigia de Água Doce e Pesca Interior, Manaus, Amazonas.p. 1-82, 2014 DRIEDZIC, W. R.; ALMEIDA-VAL, V. M. F. Enzimes of cardiac energy metabolism in Amazonian teleosts and the fresh-water stingray (Potamotrygon hystrix). Journal of Experimental Zoology, n. 274, vol. 6, p. 327-333, 1996. ESTEVES, F.A. Fundamentos de Limnologia. Interciência, ed. 2,p. 1-602. 1998. ELLMAN, G.; COURTNEY, K.; ANDRES, V.; FEATHERSTONE, R. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, p. 88–90, 1961. FICKE, A. D.; MYRICK, C. A.; HANSEN, L. J. Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fisheries, p. 17:581-613, 2007. FIELDS, P. A.; GRAHAM, J. B.; ROSENBLANT, R. H.; SOMERO, G. N. Effects of expected global climate change on marine faunas. Trends in Ecology and Evolution, v. 8, n. 10, p. 361–367, 1993. 49 FERREIRA, M.S. 2006. Certificado de vigor físico para o tambaqui (Colossoma macropomum, Cuvier 1818). Dissertação (Mestrado em Biologia Tropical de Recursos Naturais). Instituto Nacional de Pesquisas da Amazônia, Universidade Federal do Amazonas, Amazonas, 2006 GUPTA, R. C. Classification and Uses of organophosphates and Carbamates. Toxicology of Organophosphate & Carbamate Compounds, p. 5–24, 2006. HERMES-LIMA, M.; MOREIRA, D. C.; RIVERA- INGRAHAM, G.; GIRAUD BILLOUD, M.; GENARO-MATTOS, T. C.; CAMPOS, E. G. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radical Biology and Medicine, v. 89, p. 1122–1143, 2015. HEINRICHS-CALDAS, W. Expressão do gene HIF-1a durante a exposição do ciclídeo Astronotus crassipinnis (Heckel, 1840) à hipóxia. Dissertação (Mestrado em Genética, Conservação e Biologia Evolutiva). Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas. 50p, 2016. HOCHACHKA, P. W.; SOMERO, G. N. The adaptation of enzymes to temperature. Comparative Biochemistry And Physiology, v. 27, n. 3, 1968. HOGAN, J. W. Water temperature as a source of variation in specific activity of brain acetylcholinesterase of bluegills. Bulletin of Environmental Contamination and Toxicology, v. 5, n. 4, p. 347-353, 1971. HOY, T.; HORSBERG, T. E.; WICHSTROM, R. Inhibition of acetylcholinesterase in rainbow trout following dichlorvos treatment at different water oxygen levels. Aquaculture, v. 95, p. 33-40, 1991. HALLIWELL, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol, vol. 14. p. 312- 322, 2006. HALLIWELL, B. The antioxidant paradox. Lancet, p. 355: 1179–1180, 2000. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva. 2014. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Summary for Policymakers. In: SOLOMON, S.; QIN, D.; MANNING, M.; CHEN, Z.; MARQUIS, M.; AVERYT, K.B.; TIGNOR, M.; MILLER, H.L. (Eds). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, United States of America, p. 1-17, 2007. JIANG, Z. Y.; WOOLLARD, A. C. S.; WOLFF, S. P. Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and the iodometric method. Lipids, v.26, p. 853-856, 1991. 50 JOHANNSSON, O. E.; GIACOMIN, M.; SADAUSKAS-HENRIQUE, H.; CAMPOS, D.; BRAZ-MOTA, S.; HEINRICHS-CALDAS, W.; BAPTISTA, R.; WOOD, C. M.; ALMEIDA-VAL, V. M. F.; VAL, A. L.. Does hypoxia or different rates of re oxygenation after hypoxia induce an oxidative stress response in Cyphocharax abramoides (Kner 1858), a Characid fish of the Rio Negro?. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, v. 224, p. 53–67, 2018. JUNK, W. J. Aquatic habitats in Amazonia. The Environmentalist. n. 3, vol. 5, p. 24-35, 1983. JUNK, W.J.; BAYLEY, P. B.; SPARKS, R.E.The flood-pulse concept in river floodplain systems. In: DODGE, D. (Ed.) Proceedings of the International Large River Symposium. Canadian Special Publications of Fisheries and Aquatic Science. v. 106, p. 110-127, 1989. KAMPER, E. J.; ZIJLSTRA, W. G. Erythrocytometric methods and their standardization. Clin Chim Acta, v. 6, p. 538-542, 1964. KEEN, J. H.; HABIG, W. H.; JAKOBY, W. B. Mechanism for the several activities of the glutathione S-transferase. The journal of biological chemistry, p. 251, 6183- 6188, 1976. KRAMER, D. L.; MANLEY, D.; BOURGEOIS, R. The effect od respiratory mode and oxygen concentration on the risk of aerial predation in fishes. Canadian Journal of Zoology, n. 61, vol. 3, p. 653-665, 1983. KOCHHANN, D.; CAMPOS, D. F.; VAL, A. L.. Biochemical and behavioral responses of the Amazonian fish Colossoma macropomum to crude oil: The effect of oil layer on water surface. Ecotoxicology and Environmental Safety, v. 111, p. 32–41, 2015. KUMAR, N.; KRISHNANI, K. K.; SINGH, N. P. Oxidative and Cellular Metabolic Stress of Fish: An Appealing Tool for Biomonitoring of Metal Contamination in the Kolkata Wetland, a Ramsar Site. Archives of Environmental Contamination and Toxicology, v. 76, n. 3, p. 469–482, 2019. KUO, C.; LINDBERG, C.; THOMSON, D. J. Coherence established between atmospheric carbon dioxide and global temperature. Nature, v. 343, n. 6260, p. 709– 714, 1990. LENHART, B.; STEINBERG, C. Limnologische und chemische Auswirkungen der Versauerung von Kalkarmen obserflachengewassern. Informationsberiche baver, Landsamt, p. 4:1-203, 1984. LEVEELAHTI, L. Hypoxia inducible factor 1a in aquatic vertebrates - Temperature and ROS as potential regulators. p. 1–68, 2013. LEVEELAHTI, L. et al. Revisiting redox-active antioxidant defenses in response to hypoxic challenge in both hypoxia-tolerant and hypoxia-sensitive fish species. Fish 51 Physiology and Biochemistry, v. 40, n. 1, p. 183–191, 2014. LUSHCHAK, V. I. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, v. 101, n. 1, p. 13–30, 2011. MADEIRA, D.; NARCISO, L.; CABRAL, H. N.; VINAGRE, C.. Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. Journal of Sea Research, v. 70, p. 32–41, 2012. MADEIRA, D.; VINAGRE, C.; DINIZ, M. S. Are fish in hot water? Effects of warming on oxidative stress metabolism in the commercial species Sparus aurata. Ecological Indicators, v. 63, p. 324–331, 2016. MAISANO, M.; NATALOTTO, A. N.; GIANNETTO, A.; CAPELLO, T.; OLIVA, S.; PARRINO, V.; SANFILIPPO, M.; MAURECI, A.. Influences of Environmental Variables on Neurotransmission, Oxidative System, and Hypoxia Signaling on Two Clam Species from a Mediterranean Coastal Lagoon. Journal of Shellfish Research, v. 35, n. 1, p. 41–49, abr. 2016. MANDIC, M.; SPEERS-ROESCH, B.; RICHARDS, J. G. Hypoxia Tolerance in Sculpins Is Associated with High Anaerobic Enzyme Activity in Brain but Not in Liver or Muscle. Physiological and Biochemical Zoology, v. 86, n. 1, p. 92–105, 2012. MARINHO, C. S. et al. Characterization and kinetic study of the brain and muscle acetylcholinesterase from Danio rerio. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, v. 222, n. December 2018, p. 11–18, 2019. MARTINEZ, M. L. Effects of long-term hypoxia on enzymes of carbohydrate metabolism in the Gulf killifish, Fundulus grandis. Journal of Experimental Biology, v. 209, n. 19, p. 3851–3861, 2006. MELO, J. B.; AGOSTINHO, P.; OLIVEIRA, C. R. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neuroscience Research, v. 45, n. 1, p. 117–127, 2003. MIRANDE, J. Phylogeny of the family Characidae (Teleostei: Characiformes): from characters to taxonomy. Neotrop Ichthyol, p. 8 (3): 385-568, 2010. MOYES, C. P.; SCHULTE, P. M. Princípios de Fisiologia Animal. 2. ed. Editora Artmed, p. 792, 2010. MURPHY, S. D. Pesticides. In: MURPHY, S. D. The Basic Science of Poisons, p. 519-581, 1986. NAVARRO, J. M.; PASCHKE, K.; ORTIZ, A.; VARGAS-CHACOFF, L.; PARDO, L. M.; VALDIVIA, N. The Antarctic fish Harpagifer antarcticus under current temperatures and salinities and future scenarios of climate change. Progress in Oceanography, p. 1-15, 2018. 52 NIKCEVIC, M.; MICKOVIC, B.; GACIC, Z.; ZIVADINOVIC, D.. Thermal sensitivity of white muscle lactate dehydrogenase isolated from a lake trout, (Salmo trutta), inhabiting lake Plav, Montenegro. Environmental Biology of Fishes, v. 100, n. 5, p. 535–549, 2017. NOBRE, C. A.; SAMPAIO, G.; SALAZAR, L. Mudanças climáticas e Amazônia. Ciência e Cultura, p. 1-6, 2007. NELSON, D.L.; Cox, M.M. Lehninger principios de bioquímica. 6ª.ed. São Paulo, p. 1336, 2014. OLIVEIRA, A. M.; VAL, A. L. Effects of climate scenarios on the growth and physiology of the Amazonian fish tambaqui (Colossoma macropomum) (Characiformes: Serrasalmidae). Hydrobiologia, v. 789, n. 1, p. 167–178, 2017. PANEPUCCI, L. et al. Changes in lactate dehydrogenase and malate dehydrogenase activities during hypoxia and after temperature acclimation in the armored fish, Rhinelepis strigosa (Siluriformes, Loricariidae). Revista Brasileira de Biologia, v. 60, n. 2, p. 353–360, maio 2000. PELSTER, B.; GIACOMIN, M.; WOOD, C. M.; VAL, A. L.. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non air-breathing close relative, traira. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, v. 186, n. 5, p. 615–624, 2016. POLAKOF, S.; MOMMSEN, T. R.; SOENGAS, J. L. Glucosensing and glucose homeostasis: from fish to mammals. Comparative Biochemistry and Physiology, Part B, p. 123-149, 2011. PORCHAS, M. M.; CÓRDOVA, L. R. M.; ENRIQUEZ, R. R. Cortisol and glucose: reliable indicators of fish stress? Pan-American Journal of Aquatic Sciences, v. 4, n. 2, p. 158–178, 2009. PORTNER, H. O.; KARL, D. Ocean systems. cap. 6, p. 411-484, 2014. PÖRTNER, H.O.; FARRELL, A.P.. Physiology and climate change. Science, p. 322 (5902), 690–692, 2008. PRADO-LIMA, M.; VAL, A. L. Transcriptomic characterization of tambaqui (Colossoma macropomum, Cuvier, 1818) exposed to three climate change scenarios. PLoS ONE, v. 11, n. 3, p. 1–21, 2016. REMEN, M.; NEDERLOF, M. A. J.; FOLKEDAL, O.; THORSHEIM, G.; SITJA BOBADILLA.; PÉREZ-SÁNCHEZ, J.; OPPEDAL, F.; OLSEN, R. E. Effect of temperature on the metabolism, behaviour and oxygen requirements of Sparus aurata. Aquaculture Environment Interactions, v. 7, n. 2, p. 115–123, 2015. RICHARDS, J. G.; WANG, Y. S.; BRAUNNER, C. J.; GONZALEZ, R. J.; PATRICK, M. L.; SCHULTE, P. M.; CHIPPARI-GOMES. A. R.; ALMEIDA-VAL, V. M. F. 53 Metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to severe hypoxia. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, v. 177, n. 3, p. 361–374, 2007. ROSA, R.; PAULA, J. R.; SAMPAIO, E.; PIMENTEL, M.; LOPES, A. R.; BAPTISTA, M.; GUERREIRO, M.; SANTOS, C.; CAMPOS, D.; ALMEIDA-VAL, V. M. F.; CALADO, R.; DINIZ, M.; REPOLHO, T. Neuro-oxidative damage and aerobic potential loss of sharks under elevated CO2 and warming. Marine Biology, v. 163, n. 5, p. 1–10, 2016. ROPKE, C. P.; AMADIO, S.; ZUANON, J.; FERREIRA, E. J. G.; DEUS, C. P.; PIRES, T. H. S.; WINEMILLER, K. O. Simultaneous abrupt shifts in hydrology and fish assemblage struture in foodplain lake in the central Amazon. Scientific reports, p. 1-10, 2017. SADAUSKAS-HENRIQUE, H. Efeitos subletais da poluição por petróleo e derivados sobre peixes da Amazônia (Amazonas, Brasil). Tese (Doutorado em Biologia de Água Doce e Pesca Interior). Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, p. 195, 2014. SAMPAIO, E.; MAULVAULT, A. L.; LOPES, V. M.; PAULA, J. R.; BARBOSA, V.; ALVES, R.; PAUSÃO-FERREIRA, P.; REPOLHO, T.; MARQUES, A.; ROSA, R. Habitat selection disruption and lateralization impairment of cryptic flatfish in a warm, acid, and contaminated ocean. Marine Biology, v. 163, n. 10, p. 1–10, 2016. SANTOS, R.B.S.; TAVARES-DIAS, M. Células sanguíneas e resposta hematológica de Oxydoras niger (Pisces, Doradidae) oriundos da bacia do médio rio Solimões, Estado do Amazonas (Brasil), naturalmente parasitados. Bol. Inst. Pesca, São Paulo, n. 36, vol. 4, p. 283-292, 2011. SANTOS, G.; FERREIRA, E.; ZUANON, J. Peixes comerciais de Manaus. PróVarzea- Projeto Manejo dos Recursos Naturais da Várzea, 2006. SCANDALIOS, J. G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, v. 38, n. 7, p. 995–1014, 2005. SILMAN, I.; SUSSMAM, J. Acetylcolinesterase: classical and noncalssical functions and pharmacology. Current Opinion in Pharmacology, v. 5, p. 293-302, 2005. SIOLI, H. Amazônia. Fundamentos da ecologia da maior região de florestas tropicais. Petrópolis: Vozes, 1990. SIOLI, H. The Amazon and its affluent: hydrographic, morphology of the river courses and river types. In. Sioli, H. (Ed.). The Amazon. Limnology and landscape ecology of a mighty tropical river and its basin. Dordrecht: Dr W. Junk Publishers, 1984. p. 127-165. SOMERO, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. J Exp Biol, p. 213: 912- 920, 2010. 54 SOMERO, G. N.; DONG, Y. Temperature adaptation of cytosolic malate dehydrogenases of limpets (genus Lottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distribuitions. Journal of Experimental Biology, p. 2012: 169-177, 2009. STOREY, K. B. Comparative enzymology—new insights from studies of an “old” enzyme, lactate dehydrogenase. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, v. 199, p. 13–20, set. 2016. TAVARES-DIAS, M.; MORAES, F.R. Hematologia de peixes teleósteos. Ribeirão Preto: FMRP-USP, 2004. TAVARES-DIAS, M.; DAMATTA, R.A.; RIBEIRO, M.L.S.; CARVALHO, T.M.U.; NASCIMENTO, J.L.M. Caracterização morfológica e funcional de leucócitos de peixes. Manaus: Embrapa, 2009. TÕUGU, V. Acetylcholinesterase: mechanism of catalysis and inhibition. Current Medicinal Chemistry Central Nervous System Agents, p. 155-170, 2001. VAN DER OOST, R.; BEYER, J.; VERMEULEN, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, p. 13:57-149, 2003. VAL, A.L.; SILVA, M.N.P.; ALMEIDA-VAL, V.M.F. Hypoxia adaptation in fish of the Amazon: a never-ending task. South African Journal of Zoology, v.33, n.2, p. 107- 114, 1998 VAL, A.L.; ALMEIDA-VAL, V.M.F. The Amazon ichthyofauna. In: Val, A.L.; Almeida Val, V.M.F. (Eds). Fishes of the Amazon and their environment: physiological and biochemical aspects. Springer, Verlang, Berlim, Heidelbeg. p. 29-30, 1995. VAL, A.L. Oxigen transfer in fish: morphological and molecular adjustments. Brazilian Journal of Medical and Biological Research, n. 28, p. 1119-1127, 1995. VAL, A.L.; PAULA-SILVA, M.N.; ALMEIDA-VAL, V.M.F. Estresse em peixes – Ajustes Fisiológicos e Distúrbios Orgânicos. In: RANZAN-PAIVA, M.J.T.; TAKEMOTO, R.M.; LIZAMA, M.d.l.A.P. (Eds.). Sanidade de Organismos Aquáticos. São Paulo: Varela, 2004. p. 75-88. VINAGRE, C.; MADEIRA, D.; NARCISO, L.; CABRAL, H. N.; DINIZ, M. Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecological Indicators, v. 23, p. 274–279, 2012. YANIK, T.; ASLAN, I. Impact of global warming on aquatic animals. Pakistan Journal of Zoology, v. 50, n. 1, p. 353–363, 2018. WELKER, A.F.; MOREIRA, D.C.; CAMPOs, E.G.; HERMES-LIMA, M. 2013. Role of redox metabolismo for adaptation of aquatic animals to drastic changes in oxygen 55 availability. Comp Biochem Physiol Part A Molec Integ Physiol, n. 165, p. 384- 404, 2013. ZAR, J.K. Biostatistical analysis. 2. ed. New Jersey: Pretice-Hall, 1984. ZAKHARTSEV, M.; JOHANSEN, T.; PORTNER, H. O.; BLUST, R. Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): genetic, kinetic and thermodynamic aspects. Journal of Experimental Biology, v. 181, n. 1, p. 213–232, 2003. ZHANG, G. et al. Modulated expression and enzymatic activities of Darkbarbel catfish, Pelteobagrus vachelli for oxidative stress induced by acute hypoxia and reoxygenation. Chemosphere, v. 151, p. 271–279, 1 maio 2016.pt_BR
dc.subject.cnpqCiências Biológicaspt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:ENS - Trabalho de Conclusão de Curso de Graduação



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.