DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2391
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Paulo Adrian Assuncao da-
dc.date.available2020-03-02-
dc.date.available2020-03-19T01:09:54Z-
dc.date.issued2015-04-12-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2391-
dc.description.abstractTechniques for genetic fingerprinting and independent cultivation approaches have been used extensively to evaluate the diversity of microbial communities in various environments. However, determining the composition of species present in these communities is not an easy task, typically requiring expensive and laborious testing. In this context, T-RFLP (terminal restriction fragment length polymorphism), used to determine the structure of complex microbial communities for examining polymorphisms of DNA restriction fragments, is a practical, robust and reliable tool. The prediction taxonomy of terminal restriction fragments (T-RFs) can be achieved using the 16S rDNA sequence of bacteria present on the World Wide Web (www). Thus, it developed a set of computational tools, called OneSix, for T-RFLP analysis in silico of sequences present in public domain databases. Therefore, such sequences was conducted by PCR amplification (Polymerase Chain Reaction) and in silico digestion of the 16S rDNA sequences cured, present in the site SILVA, using the sequences of 11 forward primers, reverse primers 10 and 13 enzymes restriction, commonly used in T-RFLP technique. The algorithms were developed in the Ruby programming language, due to a broad class of packets directed to methods and bioinformatics, the bioruby; and tested by simulating the PCR, resulting in 81 files and T-RFLP, in 1053 files. The OneSix intends to facilitate the prediction process Taxonomic T-RFs by researchers in the field, by generating comprehensive and relevant data to the reality of T-RFLP technique. Keywords: Computational tool. T-RFLP. 16S rDNA. Ruby language.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectFerramenta computacionalpt_BR
dc.subjectT-RFLPpt_BR
dc.subjectGene 16S rDNApt_BR
dc.subjectLinguagem Rubypt_BR
dc.titleDesenvolvimento de ferramentas computacionais para análise T-RFLP in silico do gene ribossômico 16Spt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-19T01:09:54Z-
dc.contributor.advisor-co1Saito, Daniel-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9653041674065765pt_BR
dc.contributor.advisor1Rezende , Cleiton Fantin-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3982396993273580pt_BR
dc.contributor.referee1Rezende, Cleiton Fantin-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3982396993273580pt_BR
dc.contributor.referee2Procópio, Rudi Emerson de Lima-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2478199435796976pt_BR
dc.contributor.referee3Procópio , Aldo Rodrigues de Lima-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5937149587072625pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9932955710413332pt_BR
dc.description.resumoTécnicas de fingerprinting genético e abordagens independentes de cultivo têm sido largamente utilizadas para se avaliar a diversidade de comunidades microbianas em diversos ambientes. No entanto, a determinação da composição de espécies presentes nessas comunidades não é tarefa simples, normalmente requerendo ensaios caros e laboriosos. Nesse contexto, a técnica de T-RFLP (Terminal restriction fragment length polymorphism), utilizada para se determinar a estrutura de comunidades microbianas complexas pela análise de polimorfismos de fragmentos de restrição de DNA, constitui uma ferramenta prática, robusta e confiável. A predição taxonômica de fragmentos terminais de restrição (T-RFs) pode ser alcançada utilizando-se sequências de 16S rDNA de bactérias presentes na world wide web (www). Assim, foi desenvolvido um conjunto de ferramentas computacionais, denominado OneSix, para análise T-RFLP in silico de sequências presentes em bancos de dados de domínio público. Para tanto, foram conduzidas a amplificação por PCR (Polymerase chain reaction) e a digestão in silico de sequências de 16S rDNA curadas, presentes no sítio SILVA, utilizando-se as sequências de 11 primers forward, 10 primers reverse e 13 enzimas de restrição, comumente utilizados na técnica de T-RFLP. Os algoritmos foram desenvolvidos na linguagem de programação Ruby, devido a uma vasta classe de métodos e pacotes voltados à bioinformática, o Bioruby; e testados ao simular a técnica de PCR, resultando em 81 arquivos e T-RFLP, em 1053 arquivos. O OneSix pretende facilitar o processo de predição taxonômica de T-RFs por pesquisadores da área, através da geração de dados abrangentes e pertinentes à realidade da técnica de T-RFLP. Palavras-chave: Ferramenta computacional. T-RFLP. Gene 16S rDNA. Linguagem Ruby.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazôniapt_BR
dc.relation.referencesBAKER, G. C.; SMITH, J. J.; COWAN, D. A. Review and re-analysis of domain-specific 16S primers. Journal of microbiological methods, v. 55, n. 3, p. 541-555, 2003. COCK, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, v. 25, n. 11, p. 1422-1423, 2009. COLLINGBOURNE, H. The little book of Ruby. Dark Neon, 2006. Tradução de Francisco de Oliveira. São Paulo: Sismicro Informática. Disponível em <http://www.sismicro.com.br>. Acesso em 20 de agosto de 2013. DORAK, M. T. Real-time PCR. Taylor & Francis, 2007. EDEL-HERMANN, V. et al. Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiology Ecology, v. 47, n. 3, p. 397-404, 2004. ENGEBRETSON, J. J.; MOYER, C. L. Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Applied and Environmental Microbiology, v. 69, n. 8, p. 4823-4829, 2003. FERNANDEZ-GUERRA, A. et al. TRFPred: a nucleotide sequence size prediction tool for microbial community description based on terminal-restriction fragment length polymorphism chromatograms. BMC Microbiology, v. 10, n. 262, 2010. FISHER, M. et al. Diversity of gut bacteria of Reticulitermes flavipes as examined by 16S rRNA gene sequencing and amplified rDNA restriction analysis. Current microbiology, v. 55, n. 3, p. 254-259, 2007. FITZJOHN, R. G.; DICKIE, I. A. TRAMPR: AN R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Molecular Ecology Notes, v. 7, n. 4, p. 583-587, 1 jul. 2007. 50 FLANAGAN, D.; MATSUMOTO, Y. The ruby programming language. Sebastopol: O'Reilly Media, Inc., 2008. GOTO, N. et al. BioRuby: bioinformatics software for the Ruby programming language. Bioinformatics, v. 26, n. 20, p. 2617-2619, 2010. HARMS, G. et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environmental science & technology, v. 37, n. 2, p. 343-351, 2003. HIRAISHI, A.; IWASAKI, M.; SHINJO, H.. Terminal restriction pattern analysis of 16S rRNA genes for the characterization of bacterial communities of activated sludge. Journal of bioscience and bioengineering, v. 90, n. 2, p. 148-156, 2000. HOLLAND, R. C. G. et al. BioJava: an open-source framework for bioinformatics. Bioinformatics, v. 24, n. 18, p. 2096-2097, 2008. HONGOH Y., OHKUMA M., KUDO T. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS microbiology ecology, v. 44, n. 2, p. 231-242, 2003. HUWS, S. A. et al. Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. Journal of microbiological methods, v. 70, n. 3, p. 565-569, 2007. JUNIER, P.; JUNIER, T.; WITZEL, K. -P. TRiFLe, a program for in silico terminal restriction fragment length polymorphism analysis with user-defined sequence sets. Appl. Environ. Microbiol., v. 74, n. 20, p. 6452-6456, out. 2008. KITTS, C. L. Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics.Biological Sciences, p. 69, 2001. KLINDWORTH, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research, p. gks808, 2012. LAL, D. et al. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus. Ann Clin Microbiol Antimicrob, v. 10, n. 28, p. 1-11, 2011. LANE, D. J. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, p. 125-175, 1991. LANE, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences, v. 82, n. 20, p. 6955-6959, 1985. LIU, W. T. et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and environmental microbiology, v. 63, n. 11, p. 4516-4522, 1997. 51 LUDWIG, W. et al. ARB: a software environment for sequence data. Nucleic acids research, v. 32, n. 4, p. 1363-1371, 2004. MARCHESI, J. R. et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and environmental microbiology, v. 64, n. 2, p. 795-799, 1998. MÜHLING, M. et al. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. The ISME journal, v. 2, n. 4, p. 379-392, 2008. MUYZER, G. et al. Denaturing gradient gel electrophoresis (DGGE) in Microb Ecol Molecular. Microbial Ecology, v. 35, p. 1-27, 1998. NOSSA, C. W. et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World journal of gastroenterology: WJG, v. 16, n. 33, p. 4135, 2010. PRESSMAN, R.S. Engenharia de Software. 5ª ed. Rio de Janeiro: McGraw-Hill, 2002. QUAST, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, p. gks1219, 2012. REYSENBACH, A. L.; PACE, N. R. Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p. 101-107, 1995. RICKE, P.; KOLB, S.; BRAKER, G. Application of a newly developed ARB software-integrated tool for in silico terminal restriction fragment length polymorphism analysis reveals the dominance of a novel pmoA cluster in a forest soil. Appl. Environ Microbiol., v. 71, n. 3, p. 1671-1673, mar 2005. ROSCH, C.; BOTHE, H. Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl. Environ. Microbiol., v. 71, n. 4, p. 2026-2035, abr. 2005. RUDI, K. et al. Strain characterization and classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from the variable regions V6, V7, and V8. Applied and environmental microbiology, v. 63, n. 7, p. 2593-2599, 1997. SEBESTA, Robert W. Conceitos de linguagens de programação. Bookman, 2011. SHYU, C. et al. MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb. Ecol., v. 53, n. 4, p. 562-570, mai. 2007. SOERGEL, D. AW et al. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. The ISME journal, v. 6, n. 7, p. 1440-1444, 2012. 52 STADHOUDERS, R. et al. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5′ nuclease assay.The Journal of Molecular Diagnostics, v. 12, n. 1, p. 109-117, 2010. STAJICH, J. E. et al. The Bioperl toolkit: Perl modules for the life sciences. Genome research, v. 12, n. 10, p. 1611-1618, 2002. VAN PELT-VERKUIL, E.; VAN BELKUM, A.; HAYS, J. P. Principles and technical aspects of PCR amplification. Springer Science & Business Media, 2008. WANG, Y.; QIAN, P. Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLOS one, 2009. Doi: 10.1371/journal.pone.0007401 WATANABE, K.; KODAMA, Y.; HARAYAMA, S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods, v. 44, n. 3, p. 253-262, 2001. WU, J.; HONG, P.; LIU, W. Quantitative effects of position and type of single mismatch on single base primer extension. Journal of microbiological methods, v. 77, n. 3, p. 267-275, 2009. WU, Z. et al. Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area. PloS one, v. 10, n. 6, p. e0129397, 2015. YOON, J. H.; LEE, S. T.; PARK, Y. H. Inter-and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. International journal of systematic bacteriology, v. 48, n. 1, p. 187-194, 1998. ZOETENDAL, E. G. et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Applied and environmental microbiology, v. 68, n. 7, p. 3401-3407, 2002.pt_BR
dc.subject.cnpqBiotecnologiapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Desenvolvimento de ferramentas computacionais para análise T-RFLP in silico do gene ribossomal 16S.pdf2,56 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons