DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/2368
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCruz , Paula Figliuolo da-
dc.date.available2020-03-17-
dc.date.available2020-03-17T19:42:49Z-
dc.date.issued2011-07-14-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/2368-
dc.description.abstractAnopheles triannulatus is a complex of cryptic species consisting of at least three species: Anopheles triannulatus ss, Anopheles halophylus and another until now not identified species named A. triannulatus C. Yet, A. triannulatus is a zoophilic, twilight and exophilic species. Nevertheless, A. triannulatus has endophagous and anthropophilic abilities. The importance of anopheles triannulatus as a transmitter of human malaria is still an issue. A. triannulatus has been found infected with Plasmodium vivax and Plasmodium falciparum, so is being considered as a possible vector of malaria in Venezuela. Given this, and that its taxonomic status lies upon controversies, it is constructed in this work a genomic library enriched with microsatellites (SSRs) which were analyzed in two populations from the Amazon Region. That library has generated 96 clones with inserts and 84 nucleotide sequences of good quality. Of the 75 contigs obtained, 83 sequences showed to contain SSRs with only 1.31% of inherent redundancy. 51 primers pairs were isolated, from which 15 loci microsatellites were characterized in 25 individuals of A. triannulatus collected in the neighborhood of the site Puraquequara, in the city of Manaus, in Amazonas State, Brazil. The work also shows were obtained 88 alleles, ranging from 3 to 10 alleles per locus, with an average of 6.0 alleles. The observed heterozygosity (HO) ranged from 0.157 to 0.866, while expected heterozygosity (HE) ranged between 0.322 to 0.843. The amplification of 15 heterologous microsatellite loci revealed four loci, amplified for all species (A. benarrochi, A. rangeli, A. oswaldoi and A. darlingi), and four amplified loci for at least one species. For the analysis of genetic variability eight loci were selected in which more polymorphism and number of individuals were genotyped. For those eight loci, 71 alleles were obtained with an average of 6.25 and 7.25 alleles per locus, at Puraquequara and Janauari river, respectively. Both population have shown observed heterozygosity ranging from respectively 0.318 to 0.937 and from expected 0.455 to 0.838, what indicates high genetic variability. The Wright's F statistics showed high genetic structure among populations (FST = 0.282), what is a fair indication of interspecific differentiation for complex species, what is confirmed, by one side, by the high figure for the genetic distance between the two populations (D = 1.832), and by another side, by the results of the implemented Bayesian analysis, performed with the aid of the computational software STRUCTURE , which revealed the existence of two clusters (K = 2) taking into account two distinct populations.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAtribuição-NãoComercial-SemDerivados 3.0 Brasil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectAnopheles triannulatuspt_BR
dc.subjectDNA microssatélitept_BR
dc.subjectVariabilidade genéticapt_BR
dc.subjectComplexo de espéciept_BR
dc.subjectMalária.pt_BR
dc.titleIsolamento e caracterização de locos microssatélites e análise da variabilidade genética de duas populações de anopheles (n.) Triannulatus sensu latu (diptera: culicidae) da cidade de Manauspt_BR
dc.title.alternativeIsolamento e caracterização de locos microssatélites e análise da variabilidade genética de duas populações de anopheles (n.) Triannulatus sensu latu (diptera: culicidae) da cidade de Manauspt_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2020-03-17T19:42:49Z-
dc.contributor.advisor-co1Batista , Jacqueline da Silva-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9560715515896160pt_BR
dc.contributor.advisor1Santos, Joselita Maria Mendes dos-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8745534872253902pt_BR
dc.contributor.referee1Santos , Joselita Maria Mendes dos-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8745534872253902pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6054216878731455pt_BR
dc.description.resumoAnopheles triannulatus é um complexo de espécies crípticas constituido de pelo menos três espécies: Anopheles triannulatus s.s., Anopheles halophylus, e outra ainda não identificada, denominada A. triannulatus C. É uma espécie zoofílica, crepuscular e exofílica. No entanto, tem a capacidade endofágica e antropofílica. Sua importância como transmissora da malária humana ainda é controvertida. A. triannulatus já foi encontrada infectada por Plasmodium vivax e Plasmodium falciparum, sendo considerada uma possível vetora da malária na Venezuela. Diante disso e do seu status taxonômico ainda controvertido, foi construída uma biblioteca genômica enriquecida com microssatélites (SSRs) e estes analisados em duas populações do Amazonas. Esta biblioteca gerou 96 clones com insertos e 84 sequências nucleotídicas de boa qualidade. Dos 75 contigs obtidos, 83 sequências continham SSRs, com apenas 1,31% de redundância. Foram isolados 51 pares de primers. Destes, 15 locos microssatélites foram caracterizados em 25 indivíduos de A. triannulatus coletados no bairro Puraquequara, Manaus (Amazonas). Foram obtidos 88 alelos, variando entre 3 a 10 alelos por loco, com uma media de 6,0 alelos. A heterozigozidade observada (HO) variou entre 0,157 a 0,866, enquanto a heterozigosidade esperada (HE) variou entre 0,322 a 0,843. A amplificação heteróloga de 15 locos microssatélites revelou quatro locos amplificados para todas as espécies (A. benarrochi, A. rangeli, A. oswaldoi e A. darlingi) e quatro para, pelo menos, uma espécie. Para análise da variabilidade genética foram selecionados oito locos que apresentaram maior polimorfismo e número de indivíduos genotipados. Desses oito locos analisados foram obtidos 71 alelos, com uma media de 6,25 e 7,25 alelos por loco em Puraquequara e Janauari, respectivamente. A heterozigosidade observada variou de 0,318 a 0,937 e a esperada variou de 0,455 a 0,838, nas duas populações, indicando elevada variabilidade genética. As estatísticas F de Wright revelaram alta estruturação genética entre as populações (FST= 0,282), indicativa de diferenciação interespecífica para complexos de espécies, a qual foi confirmada pelo elevado valor de distância genética entre as duas populações (D= 1,832) e pelos resultados da análise Bayesiana implementada no programa STRUCTURE, que evidenciou a existência de dois clusters (K=2), sendo considerada duas populações distintas.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazôniapt_BR
dc.relation.referencesANNAN, Z.; KENGNE, P.; BERTHOMIEU, A.; ANTONIO-NKONDJIO, C.; ROUSSET, F.; FONTENILLE, D.; WEILL, M. Isolation and characterization of polymorphic microsatellite markers from the mosquito Anopheles moucheti, malaria vector in Africa. Molecular Ecology Notes, DOI: 10.1046/j.1471-8286, 2003 ARRUDA, M.; CARVALHO, M.B.; NUSSENZWEIG, R.S.; MARACIC, M.; FERREIRA, A.W.; COCHRANE, A.H. Potential vectores of malaria and their different susceptibility to Plasmodium falciparum and Plasmodium vivax in northern Brazil identified by immunoassay. Amazon Journal of Tropical Medicine Hygiene, v. 35, p. 873-881, 1986 AVISE, J.C. Molecular Markers, Natural history and evolution. 2nd edition, Sinauer Association, Sunderland, MA, 541 pp., 2004 AYALA, D.; LE GOFF, G.; ROBERT, V.; JONG, P.; TAKKEN, W. Population structure of the malaria vector Anopheles funestus (Diptera: Culicidae) in Madagascar and Comoros. Acta Tropica, v. 97, p. 292–300, 2006 BATISTA, J.S.; FARIAS, I.P.; FORMIGA-AQUINO, K.; SOUSA, A.C.B.; ALVES-GOMES, J.A. DNA microsatellite markers for “dourada” (Brachyplatystoma rousseauxii, Siluriformes: Pimelodidae), a migratory catfish of utmost importance for fisheries in the Amazon: development, characterization and inter-specific amplification. Conservation Genetic Resources, 2009 BEHBAHANI, A.; DUTTON, T.J.; RAJU, A.K.; TOWSON, H.; SISKINS, S.P. Polymorphic microsatellite loci in the mosquito Aedes polynesiensis. Molecular Ecology Notes, v. 4, p. 59-61, 2004 BENARROCHI, E.L. Studies on malaria in Venezuela. Amazon Journal of Tropical Medicine Hygiene, v. 14, p. 690-693, 1931 BERTHOMIEU, A.; P. KENGNE, P; AWONO-AMBENE, P.P; RAYMOND, M.; FONTENILLE, D.; WEILL, M. Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles nili. Molecular Ecology Notes, v.3, p.394-396, 2003 BILLOTTE, N.; LAGODA, P.J.L.; RISTERUCCI, A.M.; BAURENS, F.C. Microsatelliteenriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits, n. 54, v. 4, p. 277-288, 1999 BOTSTEIN, D.; WHITE, R.L.; SKOLNICK, M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amazon Journal Human Genetics, v. 32, p. 314-331, 1980 73 BROCHERO, H.L; LI, C.; WILKERSON, R.C. A newly recognized species in the Anopheles (Nyssorhynchus) albitarsis Complex (Diptera: Culicidae) from Puerto Carreño, Colombia. American Journal of Tropical Medicine and Hygiene, n. 76, n. 6, p. 1113-1117, 2007 BROCHERO, H.; LI, C.; WILKERSON, R.; CONN, J.; RUIZ-GARCIA, M. Genetic Structure of Anopheles (Nyssorhynchus) marajoara (Diptera: Culicidae) in Colombia. American Journal of Tropical Medicine and Hygiene, v. 83, n. 3, p. 585–595, 2010 BRUNA, S.; PORTIS, E.; BRAGLIA, L.; BENEDETTI, L; COMINO, C. Isolation and characterization of microsatellite markers from Hibiscus rosa-sinensis (Malvaceae) and cross-species amplifications. Conservation Genetic Resources, v. 10, n. 3, p.771-774, 2009 CERQUEIRA. N.L. Distribuição geográfica dos mosquitos da Amazônia. Revista Brasileria de Entomologia. v. 10, p. 111-168, 1961 CHARLWOOD, J.D.; WILKES, T.J. Observtions on the biting activity of Anopheles triannulatus bachmanni from the Mato Grosso, Brazil. Acta Amazonica, v. 11, p. 67-69, 1981 COLUZZI, M. Anopheline mosquitoes: genetic methods for species differentiation. IN: Malaria - Principles and Pratice of Malariology, p.411-430, 1988 CONN, J.E.; BOLLBACK, J.; ONYABE, D.Y.; ROBBINSON, T.; WILKERSON, R.C.; PÓVOA, M.M. Isolation of polymorphic microsatellite markers from the malaria vector Anopheles darlingi. Molecular Ecology Notes, v. 1, p. 223-225, 2001 CONN, J.E.; VINEIS, J.H.; BOLLBACK, J.P.; ONYABE, D.Y.; WILKERSON, R.C.; POVOA, M.M. Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. American Journal of Tropical Medicine and Hygiene, v. 74, n. 5, p. 798-806, 2006 CONSOLI, R.A.G.B.; LOURENÇO-DE-OLIVEIRA, R. Principais mosquitos de importância sanitária no Brasil. Fiocruz, Rio de Janeiro, Brasil. p. 228, 1994 COUHET, A.; SIMARD, F.; BERTHOMIEU, A.; RAYMOND, M.; FONTENILLE, D.; WEILL, M. Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles funestus. Molecular Ecology Notes, v.2, p. 498-500, 2002 DEANE, L.M.; CAUSEY, O.R.; DEANE, M.P. Notas sobre a distribuição e a biologia dos anofelinos das regiões nordestina e Amazônia do Brasil. Revista de Saúde Pública, v. 1, p. 827-965, 1948 ESTOUP, A.; GARNEY, I.; SOLIGNAC, M.; COURMET, J.M. Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics, v. 140, p. 679-695, 1995 EVANNO, G.; REGNAUT, S.; GOUDET, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology. v. 14, p. 2611-2620, 2005 EXCOFFIER, L.; LAVAL, G.; SCHNEIDER, S. Arlequin ver. 3.1. An integrated software package for population genetics data analysis. Evolutionay Bioinformatics Online. v. 1, p. 47-50, 2005 74 FALUSH, D.; STEPHENS, M.; PRITCHARD, J.K. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics, v.164, p.1567-1587, 2003 FARAN, M.E. Mosquitos Studies (Diptera: Culicidae) XXXIV. A revision of the Albimanus Section of the subgenus Nyssorhynchus of Anopheles. Contributions of the American Entomological Institute, v. 15, p. 1-215, 1980 FERGUSON, A.; TAGGART, J.B.; PRODHOL, A.; MCMEEL, O.; THOPSON, C.; STONE, C.; MCGINNITY, P.; HYNES, R.A. The application of molecular markers to the study and conservation of fish population with special reference to Salmon. Journal Fish Biology, v. 47, p. 103-126, 1995 FONSECA, D.M.; ATKINSON, C.T.; FLEISCHER, R.C. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Molecular Ecology, v. 7, p. 1617-1619, 1998. FORATTINI, O.P. Culicidologia Médica – Identificação, Biologia, Epidemiologia. Edusp, São Paulo, Brasil. v. 2, p. 864, 2002 FORATTINI, O. P. Culicidologia Médica. Editora da Universidade de São Paulo, São Paulo, Brasil. v. 2, p. 383-390, 2003 GABALDON, A.; COVA-GARCIA, P. Zoogeografia de los anofelinos em Venezuela. Los dos vectores principales. Tijeretazos Sobre Malaria, v. 10, p. 19-32, 1946 GALVÃO, Contribuição ao conhecimento dos anofelinos do grupo Nyssorhynchus de São Paulo e regiões vizinhas (Diptera: Culicidae). Arquivos de Zoologia, p. 399-484, 1940 GALVÃO, A.L.A. Chaves para a identificação das espécies do subgênero Nyssorrhynchus do Brasil. Arquivos da Faculdade de Higiene e Saúde Pública, v. 11, p. 141-153, 1944 GALVÃO e LANE, J. Observações sobre alguns anofelinos de Salobra, Mato Grosso (Diptera: Culicidae). Revista de Biologia e Higiene, v. 11, p. 10-18, 1941 GARDNER, M. J. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, v. 419, 498–511, 2002. GOLDSTEIN, D.B e SCHLOTTERER, C. Microsatellites: Evolution and Applications. Oxford University Press, New York, p. 343, 1999 GOUDET, J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995), 2002 GUILEMIN, M.L.; SEVERINI, C.; BERTHOMIEU, A.; RAYMOND, M.; WEILL, M. Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles sacharovi. Molecular Ecology Notes, v. 3, p. 338-340, 2003 GUTIÉRREZ, L.; NARANJO, N.J.; CIENFUEGOS, A.V.; MUSKUS, C.E.; LUCKHART, S.; CONN, J.E.; CORREA, M,M. Population structure analysed and demografic history of the malaria vector Anopheles albimanus from the Caribbean and the Pacific regions of Colombia. Malaria Journal, v. 8, n. 258, 2009 75 HALL, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, v. 41, p. 95–98, 1999 HAMADA, H.; PETRINO, M.G.; KAKUNAGA, T.; SEIDMAN, M.; STOLLAR, B.D. Characterization of genomic poly (dT-dG) poly (dC-dA) sequences: structure, organization, and conformation. Molecular and Cellular Biology, v. 4, p. 2610-2621, 1984 HARTL, D.L. A primer of populations genetics. Sunderland, Massachustts, Sinauer Associates, Inc. Publisher. p. 191, 1981 HASAN, A.U.; SUGURI, S.; FUJIMOTO, C.; ITAKI, R.L.; HARADA, M.; KAWABATA, M.; BUGORO, H.; ALBINO, B. Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands. BMC Evolutionary Biology, v. 8, n. 318, 2008 HILLE, A.; JANSSEN, I.A.W.; MENKEN, M.S.; THORPE, R.S. Heterologous Amplification of Microsatellite Markers From Colubroid Snakes in European Natricines (Serpentes: Natricinae). The Journal of Heredity, v. 1, n. 93, p. 63-66, 2002 HUBER, K.; MOUSSON, F.; RODHAIN, F.; FAILLOUX, A.B. Isolation and variability of polymorphic microsatellite loci in Aedes aegypti, the vector of dengue viruses. Molecular Ecology Notes, v. 1, p. 219-222, 2001 JARNE, P. e LAGODA, P.J.L. Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution, v. 11, p. 424-429, 1996 JONES, A.G.; AVISE, J.C. Microsatellite analysis of maternity and the mating system in the Gulf pipefish Syngnathus scovelli, a species with male pregnancy and sex-role reversal. Molecular Ecology, v. 6, p. 203-213, 1997 JUNG, J.; LEE, E.; KIM, W. Isolation and characterization of polymorphic microsatellite markers of Anopheles sinensis, a malaria vector mosquito in the East Asia region. Molecular Ecology Notes, v. 6, p. 1272-1274, 2006 KAMAU, L.; LEHMANN, T.; WILLIAM, A.; HAWLEY, W.A.; ORAGO, A.S.S.; COLLINS, F.H. Microgeografic genetic differentiation of Anopheles gambie mosquitos from Asembo Bay, Western Kenya: A comparison with Kilifi in Coastal Kenya. American Journal of Tropical Medicine and Hygiene, v. 58, n. 1, p. 64-69, 1998 KEYGHOBADI, N.; MATRONE, M.A.; EBEL, G.D.; KRAMER, L.D.; FONSECA, D.M. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Molecular Ecology Notes, v. 4, p. 20-22, 2004 KLEIN, T.A.; LIMA, J.B.P.; TADA, M.S. Comparative susceptibility of anopheline mosquitoes to Plasmodium falciparum in Rondonia, Brazil. American Journal of Tropical Medicine and Hygiene, v. 44, p. 598-603, 1991a KLEIN, T.A.; LIMA, J.B.P.; TADA, M.S.; MILLER, R. Comparative susceptibility of anopheline mosquitoes in Rondonia, Brazil, to infection by P. vivax. American Journal of Tropical Medicine and Hygiene, v. 45, p. 463-470, 1991b KITZMILLER, J.B. Genetics, cytogenetics and evolution of mosquitoes. Advances in Genetics, v. 18, p. 315-433, 1976 76 KNAPIK, E.W; GOODMAN, A.; EKKER, M.; CHEVRETTE, M.; DELGADO, J.; NEUHAUSS, S.; SHIMODA, N.; DRIEVER, W.; FISHMAN, M.C.; JACOB, H.J. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Genetics, v. 18, p. 338-343, 1998 LANZARO, G.C.; ZHENG, L.; TOURE, Y.T.; TRAORE, S.F.; KAFATOS, F.C.; VERNICK, K.D. Microsatelite DNA and isoenzyme variability in a west African population of Anopheles gambiae. Insect Molecular Biology, v. 4, n. 2, p. 105-112, 1995 LEHMANN, T.; HAWLEY, W.A.; KAMAU, L.; FONTENILLES, D.; SIMARDS, F.; COLLINS, F.H. Genetic differentiation of Anopheles gambie populations from East and West Africa: comparison of microsatellite and allozyme loci. Heredity, v. 77, p. 192-208, 1996 LEVINSON, G. e GUTMAN, G.A. Slippedstrand mispairing: A major mechanism for DNA sequence evolution. Molecular and Biology Evolution, v. 4, p. 203-221, 1987 LI, C.; WILKERSON, R.C.; FONSECA, D.M. Isolation of polymorphic microsatellite markers from the malaria vetor Anopheles marajoara (Diptera: Culicidae). Molecular Ecology Notes, v. 5, p. 65-67, 2005 LIMA, G.N.; BATISTA, J.S.; FORMIGA, K.M.; CIDADE, F.W.; RAFAEL, M.S.; TADEI, W.P.; SANTOS, J.M.M. New 24 polymorphic DNA microsatellite loci for the major malaria vector Anopheles darlingi and transpecies amplification with another anophelines. Conservation Genetic Resources, DOI 10.1007/s12686-010-9237-y, 2010 LOURENÇO-DE-OLIVEIRA, R. Some observations on the mosquitos of indian settlements in Xingu National Park, Mato Grosso State, Brazil, with emphasis on malaria vectors. Revista Brasileira de Biologia, v. 49, p. 393-397, 1989 MARTINS, W.S; LUCAS, D.C.S; NEVES, K.F.dS., BERTIOLI, D.J. WebSat - A web software for microsatellite marker development. Bioinformation v. 3, p. 282-283, 2009 MIDEGA, J.T.; MUTURIC, E.J.; BALIRAINED, F.N.; MBOGOA, C.M.; GITHUREE, J.; BEIERF, J.C.; YANG, G. Population structure of Anopheles gambiae along the Kenyan coast. Acta Tropica, v. 114, p. 103–108, 2010 MILLER, M.P. Tools for Population Genetic Analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author, 1997 MINISTÉRIO DA SAÚDE – FVS. Malária – Controle da malária no Brasil. Brasília. p. 5, 2009 MINISTÉRIO DA SAÚDE – FVS. Malária – Controle da malária no Brasil. Brasília. p. 3, 2010 MIRABELLO, L. e CONN, J.E. Molecular population genetics of the malaria vector Anopheles darlingi in Cenral and South America. Heredity, DOI: 10.1038/sj.hdy.6800805, 2006 MIRABELLO, L.; VINEIS, J.H.; YANOVIAK, S.P.; SCARPASSA, V.M.; PÓVOA, M.M.; PADILLA, N.; ACHEE, N.L.; CONN, J.E. Micosatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America. BCM Ecology, p. 1-15, 2008 MOLINA-CRUZ, A.; MERIDA, A.M.; MILLS, K.; RODRIGUEZ, F.; SCHOUA, C.; YURRITA, M.M.; MOLINA, E.; PALMIERI, M.; BLACK, W.C. Gene flow among Anopheles albimanus populations in Central America, South America, and the Caribbean assessed by 77 microsatellites and mitochondrial DNA. American Journal of Tropical Medicine and Hygiene, v. 71, n. 3, p. 350-359, 2004 MULLINS, K. The Unusual Origin of the Polymerase chain Reaction. Scientific American, p. 56-65, 1990 MUTURI, E.J.; KIM, C-H.; BALIRAINE, F.N.; MUSANI, S.; JACOB, B.; GITHURE, J.; NOVAK, R.J. Population Genetic Structure of Anopheles Arabiensis (Diptera: Culicidae) in a Rice Growing Area of Central Kenya. Journal Medicine of Entomology, v. 47, n. 2, p.144- 151, 2010 NADIR, E.; MARGALIT, H.; GALLILY, T.; BENSASSON, S.A. Microsattelite spreading in the human genome : evolutionary mechanisms and structural implications. Proceedings of the National Academy of Science, v. 93, p. 6470-6475, 1996 NDO, C.; NKONDJIO, C.A.; COUHET, A.; AYALA, D.; KENGNE, P.; MORAIS, I.; AMBENE, P.H.A.; COURET, D.; NGASSAM, P.; FONTENILLE, D.; SIMARD, F. Population genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa. Malaria Journal, v.9, n.161, 2010 NEI, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, v. 89, p. 583-590, 1978 NEIVA, A. e PINTO, C. Considerações sobre o gênero Cellia Theobald, com a descripção de uma nova espécie. Brazilian Medicine, v. 36, p. 355-357, 1922 OLIVEIRA-FERREIRA, J.; LOURENÇO-DE-OLIVEIRA, R.; TEVA, A.; DEANE, L.M.; DANIEL-RIBEIRO, C.T. Natural malaria infections in anophelines in Rondonia State, Brazilian Amazon. American Journal of Tropical Medicine and Hygiene, v. 43, p. 6-10, 1990 Organização Mundial de Saúde (OMS), Global Malaria Programme – Malaria endemic countries (www.who.int/malaria/malariaendemiccountries.html). Acesso: 12/11/08, 2010 PARK, S.D.E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection. Tese de Doutoramento, University of Dublin, 2001 PEAKALL, R. e SMOUSE, P.E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, v. 6, p. 288-295, 2006 PETERSON, G.C. e SHANNON, R.C. Mosquito de Embarcación (Salta) con notas sobre la zona biológica del Chaco (Chaco Life Zone). 3 a Reunião da Sociedade Argentina de Patologia Regional do Norte. Tucuman, v. 5, p. 649-658, 1927 PINTO, C. Disseminação da malaria pela aviação. Biologia do Anopheles gambie e outros anofelinos no Brasil. Memórias do Instituto Oswaldo Cruz, v. 34, p. 239-430, 1939 PORRETTA, D.; GARGANI, M.; BELLINI, R.; CALVATTI, M.; URBANELLI, S. Isolation of microsatellites markers in the Tiger mosquito Aedes albopictus (Skuse). Molecular Ecology Notes, v. 6, p. 880-881, 2006. PRITCHARD, J.K.; STEPHEENS, M.; DONNELLY, P. Interference of population structure using multilocus genotype data. Genetics, v.155, p. 945-959, 2000 78 RAYMOND, M. e ROUSSET, F. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. Journal of Heredity, v. 86, p. 248-249, 1995 RICE, W.R. Analyzing tables of statistical tests. Evolution, v. 43, p. 223-225, 1989 RONGNOPARUT, P.; YAICHAROEN, S.; SIRICHOTPAKORN, N.; RATTANARITHKUL, R.; LANZARO, G.C.; LINTHICUM, K.J. Microsatellites polymorphism in Anopheles maculatus, a malaria vector in Thailand. American Journal of Tropical Medicine and Hygiene, v. 6, n. 55, p. 589-594, 1996 SAMBROOK, J. e RUSSELL, D.W. A laboratory manual. Cold Spring Harbor Laboratory Press. New York, 2001 SANTOS, J.M.M.; CONTEL, E.P.B.; KERR, W.E. Biologia de Anofelinos Amazônicos. II. Ciclo biológico, postura e estádios larvais de Anopheles darlingi Root, 1926 (Diptera: Culicidae) da Rodovia Manaus/Boa Vista. Acta Amazonica, v. 11, p. 789-797, 1981 SANTOS, J.M.M. Variabilidade Genética em populções de Anopheles (N.) darlingi Root, 1992 (Diptera: Culicidae). Tese de Doutoramento, Instituto Nacional de Pesquisas da Amazônia/Fundação Universidade do Amazonas, Manaus, Amazonas. 150pp, 1992 SANTOS, J.M.M.; LOBO, J.A.; TADEI, W.P.; CONTEL, E.P.B. Intrapopulational genetic differentiation in Anopheles (N.) darlingi Root, 1926 (Diptera: Culicidae) in the Amazon region. Genetics and Molecular Biology, v. 3, n. 22, p. 325-331, 1999 SANTOS, J.M.M; MAIA, J.F.; TADEI, W.P.; RODRIGUEZ, G.A.D. Izoenzymatic Variability among Five Anopheles Species Belonging to the Nyssorhynchus and Anopheles Subgenera of the Amazon Region, Brazil. Memórias do Instituto Oswaldo Cruz, v. 98, n. 2, p. 247- 253, 2003 SANTOS, J.M.M.; MAIA, J.F.; TADEI, W.P. Differentiation and genetic variability in natural populations of Anopheles (N.) triannulatus (NEIVA e PINTO, 1922) of Brazilian Amazonia. Brazilian Jounal of Biology. v. 64, p. 327-336, 2004 SCARPASSA, V.M.; TADEI, W.P.; SUAREZ, M.F. Population structure and genetic divergence in Anopheles nuneztovari (Diptera: Culicidae) from Brazil and Colombia. American Journal of Tropical Medicine and Hygiene, v. 60, n. 6, p. 1010-1018, 1999 SCARPASSA, V.M. e CONN, J.E. Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers. Memórias do Instituto Oswaldo Cruz, v. 102, n. 3, p. 319-327, 2007 SCHEMERHORN, B.J.; GREEMAN, S.; BANKS, M.; VULULE, J.; SAGNON, N.F.; COSTANTINI, C.; BESANSKY, N.J. Dinucleotide microsatellite markers from Anopheles funestus. Molecular Ecology Notes, v. 3, p. 505–507, 2003 SCHLOTTERER, C. e TAUTZ, D. Slippage synthesis of simple sequence DNA. Nucleic Acids Research, v. 20, p. 211-215, 1992 SCHOTTERER, C. Evolutionary dynamics of microsatellite DNA. Chromossoma, v. 109, p. 365-371, 2000 SCHOTTERER, C. The evolution of molecular markers – just a matter of fashion? Natures Reviews. v. 5, 2004 79 SCHUELKE, M. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology., v. 18, p. 233-234, 2000 SHARAKHOV, I.V.; BRAGINETS, O.; MBOGO, C.N.; YAN, G. Isolation and characterization of trinucleotide microsatellites in African malaria mosquito Anopheles funestus. Molecular Ecology Notes, v. 1, p. 289-292, 2001 SILVA-DO-NASCIMENTO, T. e LOURENÇO-DE-OLIVEIRA, R. Anopheles halophylus, a new species of the subgenus Nyssorhynchus (Diptera: Culicidae) from Brazil. Memórias do Instituto Oswaldo Cruz, v. 97, p. 801-811, 2002 SILVA-DO-NASCIMENTO, T.; WILKERSON, R.C.; LOURENÇO-DE-OLIVEIRA, R. MONEIRO, F.A. Molecular confirmation of the specific status of Anopheles halophylus (Dipeta: Culicidae) and evidence of a new criptic species within An. triannulatus in Central Brazil. Journal Medicine of Entomology, v. 43, p. 455-459, 2006 SILVA-DO-NASCIMENTO, T.F. e LOURENÇO-DE-OLIVEIRA, R. Diverse population dynamics of three Anopheles species belonging to the Triannulatus Complex (Diptera: Culicidae). Memórias do Instituto Oswaldo Cruz, Rio de Janeiro. v. 102, p. 975-982, 2007 SIMARD, F.; FONTENILLE, D.; HELMANN, T.; GIROD, R.; BRUTUS, L.; GOPAUL, R.; DOURNON, C.; COLLINS, F.H. High amounts of genetic differentiation between populations of the malaria vector Anopheles arabiensis from West Africa and Eastern outer islands. American Journal of Tropical Medicine and Hygiene, v. 60, n. 6, p. 1000-1009, 1999 SLOTMAN, M.A; KELLY, N.B.; HARRINGTON, L.C.; KITTHAWEE, S.; JONES, J.W.; SCOTT, T.W.; CACCONE, A.; POWELL, J.R. Polymorphic microsatellite markers for studies of Aedes Aegypti (Diptera: Culicidae), the vector of dengue and yellow fever. Molecular Ecology Notes, v. 7, p. 168-171, 2007 SNOW, R. W., GUERRA, C. A., NOOR, A. M., MYINT, H. Y.; HAY, S. I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, v. 434, p. 214– 217, 2005. STRAND, M.; PROLLA, T.A.; LISKAY, R.M.; PETES,T.D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature, v. 365, p. 274- 276, 1993 SUNIL, S.; VENDRA, K.R.; SINGH, O.P. ; MALHOTRA, P. ; HUANG, Y. ; ZHENG, L. ; SUBBARAO, S.K. Isolation and characterization of microsatellite markers from malaria vector, Anopheles culicifacies. Molecular Ecology Notes, v. 4, p. 440–442, 2004 SWEENEY, A.W. Prospects for control of mosquito-borne diseases. Journal of Medicine and Microbiology, v. 48, p. 879-881, 1999 TADEI, W.P.; SANTOS, J.M.M; SCARPASSA, V.M.; RODRIGUEZ, I.B. Incidence, distribution and ecological aspects of Anopheles species (Diptera: Culicidae) in natural and enviromental impact of Brasilian Amazon. Acta Amazonica, p. 167-196, 1993 TADEI, W,P.; DUTUTARY-THATCHER, B.; SANTOS, J.M.M.; SCARPASSA, V.M.; RODRIGUEZ, I.B.; RAFAEL, M.S. Ecologic observations on anopheline vectors of malaria in the Brasilian Amazon. American Journal of Tropical Medicine and Hygiene, v. 59, p 325- 335, 1998 80 TADEI, W.P.; RODRIGUEZ, I.B.; TERRAZAS, W.; LIMA, C.P.; SANTOS, J.M.M.; RAFAEL, M.S.; BAGGIO, J.B.; LAGO-NETO, J.C.; GONÇALVES, M.J.F.; FIGUEIREDO, E.O. Malaria: ecology, transmission and control. Mosquitos Vetores de Doenças Tropicais e Controle Biológico. Manaus: Instituto Nacional de Pesquisas da Amazônia - INPA, p. 149, 2003 TORRES, E.P; FISCHER, K.; FOLEY, D.H; KEMP, D. Characterization of microsatellite loci in Anopheles flavirostris, the principal malaria vector in the Philippines. Molecular Ecology Notes, v. 2, p. 527-528, 2002 VAN OOSTERHOUT, C.; HUTCHINSON, W.F.; WILLS, D.P.M.; SHIPLEY, P. Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, v. 4, p. 535-538, 2004 VERARDI, A.; DONNELLY, M.J.M.; ROWLAND, M.; TOWSON, H. Isolation and characterization of microsatellite loci in the mosquito Anopheles stephensi Liston (Diptera: Culicidae). Molecular Ecology Notes, v. 4, n. 2, p. 488-490, 2002 WANG, R.; KAFATOS, F.C.; ZHENG, L. Microsatellite markers and genotyping procedures for Anopheles gambie. Parasitology Today, v. 15, n. 1, 1999 WEBER, J.L. Informativeness of human (dC-dA)n x (dG-dT)n polymorphisms. Genomics, v. 7, p. 524-530, 1990 WEILL, M.; SEVERINI, C.; GUILLEMIN, M.L.; BERTICAT, C.; BERTHOMIEU, A.; ROUSSET, F.; RAYMOND, M. Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles maculipennis. Molecular Ecology Notes, v. 3, p. 417–419, 2003 WILKERSON, R.C.; PARSONS, T.J.; KLEIN, T.A.; GAFFIGAN, T.V.; BERGO, E.; CONSOLIM, J. Diagnosis by Random Amplified Polymorphic DNA Polymerase Chain Reaction of four cryptic species related to Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) from Paraguay, Argentina and Brazil. Journal Medicine of Entomology, v. 5, n. 32, p. 697-704, 1995 WRIGHT, S. The genetical structure of populations. Annals of Human Genetics, v. 15, p. 323-354, 1951 ZUCCHI, M.L. Análise da estrutura genética de Eugenia dysenterica utilizando marcadores RAPD e SSR. Tese de Doutoramento, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, p. 130, 2002pt_BR
dc.subject.cnpqGenéticapt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - MBT Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia



Este item está licenciada sob uma Licença Creative Commons Creative Commons